oalogo2  

AUTHOR(S):

Claudio L. Marte, Leopoldo R. Yoshioka, Caio F. Fontana, José Mauro Marquez

 

TITLE

Estimation of highway traffic service level based on Module of Intelligent Transportation System and Artificial Intelligence

pdf PDF

ABSTRACT

International experience shows that several organizations have used traffic data and events occurred on roadways to build quality indicators. This paper explores methods that allow estimating traffic conditions at a given moment or over a given period of time. Traffic data were collected using Module of Intelligent Transport System (MITS), and were processed by means of Artificial Intelligence (AI) techniques based on Highway Capacity Manual (HCM) methodology. Part of these data were used to train the Artificial Neural Network (ANN) and another part were used to compare with that estimated by ANN. Experimental results show that ANN has estimated the level of service (LOS) of traffic with less than 3% error. This method can help the highway users decide the best window time for your displacement.

KEYWORDS

Intelligent Transport Systems, Highway Capacity Manual, Artificial Neural Networks, Artificial Intelligence, ITS, HCM, ANN.

REFERENCES

[1] ARTESP - SÃO PAULO STATE’S TRANSPORT REGULATORY AGENCY - ARTESP. url: . Access in: 14 may. 2009.

[2] TRB (2000). Highway Capacity Manual (HCM). Transportation Research Board, National Research Council, Washington D.C.

[3] J.P. Bigus, Data Mining with Neural Network: Solving Business Problems from Applications Development to Decision Support. McgrawHill, 1996.

[4] C. L. Marte et al, System for controlling activities of highways concessionaries. 12th WCTR. Portugal, 2010.

[5] C.E.P Cardoso, What is the number of vehicles circulating in São Paulo. Journal of Public Transport (Revista dos Transportes Públicos) ANTP, 122 – ano 31, 2009.

[6] B. M. Hamifrancy et al. Indicadores de desempenho para sistemas centralizados de controle do tráfego urbano em tempo real. ANPET XVII 2003, 2003.

[7] S. Haykin. Neural Networks – Principles and Practices. Bookman. 2nd edition. 2001.

[8] Z. L. Kovács, Redes Neurais Artificiais - Fundamentos e Aplicações. Editora Livraria da Física. 4ª edição. São Paulo, 2006.

[9] J. M. Mendel, R.W. McLaren. Reinforcement learning control and pattern recognition systems. Adaptive, learning and pattern recognition systems: Theory and applications (pp. 287–318). New York: Academic Press. 1970.

[10]S. Russel, P. Norvig, Artificial Intelligence – A Modern Approach. Pearson Education. New Jersey, 1995.

[11]R. J. Sassi, Uma Arquitetura Híbrida para Descoberta de Conhecimento em Bases de Dados: Teoria dos Rough Sets e Redes Neurais Artificiais Mapas Auto-Organizáveis. 2006. Tese (Doutorado) – Escola Politécnica da Universidade de São Paulo, Departamento de Engenharia Elétrica, São Paulo. 169 p., 2006. M.G. Simões, Controle e Modelagem Fuzzy. São Paulo: Blucher: FAPESP, 2007.

[12]M.T. Câmara, Metodologia para avaliação de desempenho em infra estrutura de transporte concedidas: Aplicação em concessões de rodovias federais. 2006. Dissertação (Mestrado em Transportes) – UNB, Brasília, 2006.

[13]L.A. Neto, Análise da capacidade de vias na cidade de Vitória – O caso da 3º Ponte. CBTU, 2009.

[14]C. L Marte et al, Sistema de soporte a las actividades de fiscalización de carreteras concesionadas. XV Congreso Argentino de Vialidad Y Transito.VIII Congresso International ITS. Argentina, 2009.

[15]Maury Meirelles Gouvêa Jr. A Neural-based gradient optimization in large power systems. WSEAS Transactions on Systems, Issue 8, Volume 11, August 2012, pp 430-439.

[16]Ahmed M. Kassem. Neural control design for isolated wind generation system based on SVC and nonlinear autoregressive moving average approach. WSEAS Transactions on Systems, Issue 2, Volume 11, February 2012, pp 39-49.

[17]Pallabi Talukdar, Mousmita Sarma and Kandarpa Kumar Sarma. Recognition of Assamese Spoken Words using a hybrid neural framework and clustering aided a priori knowledge. WSEAS Transactions on Systems, Issue 7, Volume 12, July 2013, pp 360-370.

[18]Hassen Mekki and Mohamed Chtoutou. Variable structure neural networks for real time approximation of continuous time dynamical systems using evolutionary artificial potential fields. WSEAS Transactions on Systems, Issue 2, Volume 11, February 2012, pp 75-84.

[19]Han Liu, Alexander Gegov and Frederic Stahl. J-measure based hybrid pruning for complexity reduction in classification rules. WSEAS Transactions on Systems, Issue 9, Volume 12, September 2013, pp 360-370.

Cite this paper

Claudio L. Marte, Leopoldo R. Yoshioka, Caio F. Fontana, José Mauro Marquez. (2016) Estimation of highway traffic service level based on Module of Intelligent Transportation System and Artificial Intelligence. International Journal of Computers, 1, 33-41

 

cc.png
Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0