REFERENCES
[1] A. Adiga and A. K. Vullikanti. How robust is the core of a network? Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, 8188:541–556, 2013.
[2] M. A. Al-garadi, K. D. Varathan, and S. D. Ravana. Identification of influential spreaders in online social networks using interaction weighted k-core decomposition method. Physica A: Statistical Mechanics and its Applications, 468(C):278–288, 2017.
[3] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. How the k-core decomposition helps in understanding the internet topology. ISMA Workshop on the Internet Topology, 2006.
[4] J. Berger and K. L. Milkman. What makes online content viral? Journal of Marketing Research, 49(2):192–205, 2012.
[5] K. Bhawalkar, J. Kleinberg, K. L. andTim Roughgarden, and A. Sharma. Preventing unraveling in social networks: The anchored k-core problem. Proceedings of the 39th International Colloquium, Part II, pages 440–451, 2012.
[6] J. Borge-Holthoefer, S. Meloni, B. Gonalves, and Y. Moreno. Emergence of influential spreaders in modified rumor models. Journal of Statistical Physics, 151(1-2):383–393, 1 2013.
[7] J. Borge-Holthoefer, A. Rivero, I. Garca, E. Cauh, A. Ferrer, D. Ferrer, D. Francos, D. Iiguez, M. P. Prez, G. Ruiz, F. Sanz, F. Serrano, C. Vias, A. Tarancn, and Y. Moreno. Structural and dynamical patterns on online social networks: the spanish may 15th movement as a case study. PloS one, 6(8):e23883, 2011.
[8] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir. A model of internet topology using kshell decomposition. Proceedings of the National Academy of Sciences of the United States of America, 104(27):11150–11154, 2007.
[9] M. Cataldi, L. Di Caro, and C. Schifanella. Emerging topic detection on twitter based on temporal and social terms evaluation. In Proceedings of the Tenth International Workshop on Multimedia Data Mining, MDMKDD ’10, pages 4:1–4:10, New York, NY, USA, 2010. ACM.
[10] D. Centola and M. Macy. Complex contagions and the weakness of long ties. American Journal of Sociology, 113(3):702–734, 2007.
[11] N. Chen. On the approximability of influence in social networks. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pages 1029–1037, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.
[12] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent viral marketing in largescale social networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 1029–1038, New York, NY, USA, 2010. ACM.
[13] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social networks under the linear threshold model. In Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM ’10, pages 88–97, Washington, DC, USA, 2010. IEEE Computer Society.
[14] R. Crane and D. Sornette. Robust dynamic classes revealed by measuring the response function of a social system. Proceedings of the National Academy of Sciences, 105(41):15649–15653, 2008.
[15] D. J. Daley and D. G. Kendall. Epidemics and rumors. Nature, 204:225–228, 1964.
[16] P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01, pages 57–66, New York, NY, USA, 2001. ACM.
[17] S. Dorogovtsev, A. Goltsev, and J. Mendes. k-core organization of complex networks. Physical Review Letters, 96:4, 2006.
[18] L. C. Freeman. Centrality in social networks conceptual clarification. Social Networks, 1(3):215–239, 1979.
[19] C. Giatsidis, D. Thilikos, and M. Vazirgiannis. Evaluating cooperation in communities with the k-core structure. In Proc. Int. Conf. Advances in Social Networks Analysis and Mining, pages 87–93, 2011.
[20] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. Evaluating cooperation in communities with the kcore structure. Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining, pages 87–93, 2011.
[21] W. GOFFMAN and V. A. NEWILL. Generalization of epidemic theory: An application to the transmission of ideas. Nature, 204:225 – 228, 1964.
[22] S. Gonz´alez-Bail´on, J. Borge-Holthoefer, A. Rivero, and Y. Moreno. The Dynamics of Protest Recruitment through an Online Network. Scientific Reports, 1, 2011.
[23] A. Guille, H. Hacid, C. Favre, and D. A. Zighed. Information diffusion in online social networks: a survey. ACM SIGMOD Record, 42(2):17–28, 2013.
[24] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, pages 137–146, New York, NY, USA, 2003. ACM.
[25] D. Kempe, J. Kleinberg, and E. Tardos. Influential nodes in a diffusion model for social networks. In Proceedings of the 32Nd International Conference on Automata, Languages and Programming, ICALP’05, pages 1127–1138, Berlin, Heidelberg, 2005. Springer-Verlag.
[26] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and H. A. Makse. Identification of influential spreaders in complex networks. Nature Physics, 6:888–893, 2010.
[27] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’07, pages 420–429, New York, NY, USA, 2007. ACM.
[28] J.-H. Lin, Q. Guo, W.-Z. Dong, L.-Y. Tang, and J.-G. Liu. Identifying the node spreading influence with largest k-core values. Physics Letters A, 378(45):3279 – 3284, 2014.
[29] X. Lu and C. Brelsford. Network structure and community evolution on twitter: Human behavior change in response to the 2011 japanese earthquake and tsunami. 4:6773 EP –, Oct 2014. Article.
[30] A. Montresor, F. De Pellegrini, and D. Miorandi. Distributed k-core decomposition. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’11, pages 207–208, New York, NY, USA, 2011. ACM.
[31] S. Pei and H. A. Makse. Spreading dynamics in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2013(12):P12002, 2013.
[32] S. Pei, L. Muchnik, J. S. Andrade, Z. Zheng, and H. A. Makse. Searching for superspreaders of information in real-world social media. Scientific Reports, 4, July 2014.
[33] S. Pei, L. Muchnik, J. S. A. Jr., Z. Zheng, and H. A. Makse. Searching for superspreaders of information in real-world social media. Scientific Reports, 4:5547, 2014.
[34] H. Pinto, J. M. Almeida, and M. A. Gonc¸alves. Using early view patterns to predict the popularity of youtube videos. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, WSDM ’13, pages 365–374, New York, NY, USA, 2013. ACM.
[35] J. Ratkiewicz, M. Conover, M. Meiss, B. Goncalves, S. Patil, A. Flammini, and F. Menczer. Truthy: mapping the spread of astroturf in microblog streams. Proceedings of the 19th ACM International Conference on Information and Knowledge Management, ACM, pages 249–252, 2011.
[36] M. Richardson and P. Domingos. Mining knowledgesharing sites for viral marketing. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’02, pages 61–70, New York, NY, USA, 2002. ACM.
[37] S. B. Seidman. Network structure and minimum degree. Social Networks, 5(3):269–287, 1983.
[38] E. Stattner and N. Vidot. Social network analysis in epidemiology: Current trends and perspectives. International Conference on Research Challenges in Information Science, pages 1–11, May 2011.
[39] M. Trusov, A. V. Bodapati, and R. E. Bucklin. Determining Influential Users in Internet Social Networks. Journal of Marketing Research, 47(4):643–658, Aug. 2010.
[40] Y.Wang, G. Cong, G. Song, and K. Xie. Communitybased greedy algorithm for mining top-k influential nodes in mobile social networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 1039–1048, New York, NY, USA, 2010. ACM.
[41] D. Watts, P. Dodds, J. D. served as editor, and T. E. served as associate editor for this article. Influentials, networks, and public opinion formation. Journal of Consumer Research, 34(4):441–458, 2007.
[42] L. Weng, A. Flammini, A. Vespignani, and F. Menczer. Competition among memes in a world with limited attention. Scientific Reports, 2(335), 2012.
[43] S. Wuchty and E. Almaas. Evolutionary cores of domain co-occurrence networks. BMC Evolutionary Biology, 5(24), 2005.
[44] W. Xu, W. Liang, X. Lin, and J. X. Yu. Finding top-k influential users in social networks under the structural diversity model. Information Sciences, 355356:110 – 126, 2016.
[45] Y. Yang, J. Tang, C. W. ki Leung, Y. Sun, Q. Chen, J. Li, and Q. Yang. Rain: Social role-aware information diffusion. In AAAI’15, AAAI’15, 2015.
|