REFERENCES
[1]. L. J. Crane, Flow past a stretching plate, J. Appl. Math. Phys. (ZAMP), Vol. 21, 1970, pp. 645-647.
[2]. P. S. Gupta and A. S. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing, Can. J. Chem. Eng., Vol. 55, 1977, pp. 744-746.
[3]. L. J. Grubka and K. M. Bobba, Heat transfer characteristics of a continuous, stretching surface with variable temperature, Trans. ASME J. Heat Transfer, Vol. 107, 1985, pp. 248-250.
[4]. H. I. Andersson, J. B. Aarseth and B. S. Dandapat, Heat transfer in a liquid film on an unsteady stretching surface, Int. J. Heat Mass Transfer, Vol. 43, 2000, pp. 69-74.
[5]. A. Ali and A. Mehmood, Homotopy analysis of unsteady boundary layer flow adjacent to permeable stretching surface in a porous medium, Commun. Nonlinear Sci. Numer. Simulat., Vol. 13, 2008, pp. 340-349,.
[6]. A. Ishak, R. Nazar and I. Pop, “Heat transfer over an unsteady stretching permeable surface with prescribed wall temperature,” Nonlinear Anal. Real World Appl., Vol. 10, 2009, pp. 2909-2913,.
[7]. S. Kazem, M. Shaban and S. Abbasbandy, Improved analytical solutions to a stagnation-point flow past a porous stretching sheet with heat generation, J. Franklin Inst., Vol. 348, 2011, pp. 2044–2058.
[8]. R. Sharma, Effect of viscous dissipation and heat source on unsteady boundary layer flow and heat transfer past a stretching surface embedded in a porous medium using element free Galerkin method, Appl. Math. Comput., Vol. 219, 2012, pp. 976-987.
[9]. R. Sharma, A. Ishak and I. Pop, Partial slip flow and heat transfer over a stretching sheet in a nanofluid, Mathematical Problem in Engineering, Vol. 2013, 2013, Article ID 724547, 7 pages.
[10]. Y. Wang, Liquid film on an unsteady stretching sheet, Quart. Appl. Math., Vol. 48, 1990, pp. 601- 610.
[11]. M. Miklavcic and C. Y. Wang, Viscous flow due to a shrinking sheet, Quart. Appl. Math., Vol. 64, 2006, pp. 283–290.
[12. T. Fang and J. Zhang, “Closed-form exact solutions of MHD viscous flow over a shrinking sheet, Commun. Nonlinear Sci. Numer. Simulat., Vol. 14, 2009, pp. 2853-2857.
[13]. R. Cortell, On a certain boundary value problem arising in shrinking sheet flows, Appl. Math. Comput., Vol. 217, 2010, pp. 4086-4093. 5
[14]. J. H. Merkin and V. Kumaran, The unsteady MHD boundary-layer flow on a shrinking sheet, Eur. J. Mech. B Fluids, Vol. 29, 2010, pp. 357-363.
[15]. R. Sharma, A. Ishak, I. Pop, Stability analysis of magnetohydrodynamics stagnation-point flow towards a stretching/shrinking sheet, Comp. Fluids, Vol. 102, 2014, pp. 94-98.
[16]. R. Sharma, A. Ishak, I. Pop, Stagnation point flow of a micropolar fluid over a stretching/shrinking sheet with second-order velocity slip, J. Aerospace Eng., Vol. 29, No. 5, 2016, 04016025.
[17]. E. L. A. Fauzi, S. Ahmad, I. Pop, Flow and heat transfer over a stretching and shrinking sheet with slip and convective boundary condition, AIP Conf. Pro., Vol. 1830, 2017, 020019.
[18]. V. P. Shidlovskiy, Introduction to the Dynamics of Rarefied Gases. American Elsevier Publishing Company Inc, New York, 1967.
[19]. G. S. Beavers and D. D. Joseph, Boundary condition at a naturally permeable wall, J. Fluid Mech., Vol. 30, 1967, pp. 197–207.
[20]. S. Mukhopadhyay and H. I. Andersson, Effects of slip and heat transfer analysis of flow over an unsteady stretching surface, Heat Mass Transfer, Vol. 45, 2009, pp. 1447–1452.
[21]. S. Mukhopadhyay and R. S. R. Gorla, Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presence of thermal radiation, Heat Mass Transfer, Vol. 48, 2012, pp. 1773-1781.
[22]. J. H. Merkin, On dual solutions occurring in mixed convection in a porous medium, J. Eng. Math., Vol. 20, 1985, pp. 171-179.
|