oalogo2  

AUTHOR(S):

Ivano Colombaro, Andrea Giusti

 

TITLE

Bessel Models of Linear Viscoelasticity

pdf PDF

ABSTRACT

In this paper we briefly discuss the origin and derivation of the Bessel models of linear viscoelasticity, which where first introduced by Colombaro, Giusti and Mainardi in Meccanica, 2017, 52, 825–832.

KEYWORDS

Fractional calculus, linear viscoelasticity, Bessel functions

REFERENCES

[1] Buchen P, Mainardi F. Asymptotic expansions for transient viscoelastic waves. Journal de M´ecanique, 1975, 14, 597–608.

[2] Colombaro I, Giusti A, Mainardi F. On transient waves in linear viscoelasticity. Wave Motion, 2017, 74, 191–212.

[3] Colombaro I, Giusti A, Mainardi, F. On the propagation of transient waves in a viscoelastic Bessel medium. Z Angew Math Phys, 2017, 68, 62.

[4] Colombaro I, Giusti A, Mainardi F. A class of linear viscoelastic models based on Bessel functions. Meccanica, 2017, 52, 825–832.

[5] Colombaro I, Giusti A, Mainardi F. A one parameter class of fractional Maxwell-like models. AIP Conference Proceedings, 2017, 1836, 020003.

[6] Colombaro I, Giusti A, Vitali S. Storage and dissipation of energy in Prabhakar viscoelasticity. Mathematics, 2018, 6, 15.

[7] Garra R, Mainardi F, Maione G. Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal., 2016, 19(5), 1105–1160.

[8] Giusti A. A comment on some new definitions of fractional derivative. arXiv preprint, 2017, arXiv:1710.06852.

[9] Giusti A. Dispersion relations for the timefractional Cattaneo-Maxwell heat equation. J. Math. Phys., 2018, 59, 013506.

[10] Giusti A. On infinite order differential operators in fractional viscoelasticity. Fract. Calc. Appl. Anal., 2017, 20, 854–867.

[11] Giusti A, Colombaro I. Prabhakar-like fractional viscoelasticity. Commun Nonlinear Sci Numer Simul, 2018, 56, 138–143.

[12] Giusti A, Mainardi F. A dynamic viscoelastic analogy for fluid-filled elastic tubes. Mecanica, 2016, 51, 2321–2330.

[13] Giusti A, Mainardi F. On infinite series concerning zeros of Bessel functions of the first kind. Eur. Phys. J. Plus, 2016, 131, 206.

[14] Gorenflo R, Mainardi F. Fractional Calculus: Integral and Differential Equations of Fractional Order. In A. Carpinteri and F. Mainardi (Editors): Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien and New York 1997, pg. 223.

[15] Gross B, Fuoss R. Ladder structures for representation of viscoelastic systems. J. Polymer Science, 1956, 19, 39–50.

[16] Gross B. Ladder structures for representation of viscoelastic systems, II. J. Polymer Science, 1956, 20, 121–131.

[17] Gross B. Electrical analogs for viscoelastic systems. J. Polymer Science, 1956, 20, 371–380.

[18] Mainardi F, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London (2010).

[19] Mainardi F, Garrappa R. On complete monotonicity of the Prabhakar function and non- Debye relaxation in dielectrics. J. Comput. Phys., 2015, 293, 70–80.

[20] Mainardi F, Spada G. Creep, relaxation and viscosity properties for basic fractional models in rheology, Eur. Phys. J. Special Topics, 2011, 193, 133–160.

Cite this paper

Ivano Colombaro, Andrea Giusti. (2018) Bessel Models of Linear Viscoelasticity. International Journal of Theoretical and Applied Mechanics, 3, 26-31

 

cc.png
Copyright © 2018 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0