REFERENCES
[1] Buchen P, Mainardi F. Asymptotic expansions for transient viscoelastic waves. Journal de M´ecanique, 1975, 14, 597–608.
[2] Colombaro I, Giusti A, Mainardi F. On transient waves in linear viscoelasticity. Wave Motion, 2017, 74, 191–212.
[3] Colombaro I, Giusti A, Mainardi, F. On the propagation of transient waves in a viscoelastic Bessel medium. Z Angew Math Phys, 2017, 68, 62.
[4] Colombaro I, Giusti A, Mainardi F. A class of linear viscoelastic models based on Bessel functions. Meccanica, 2017, 52, 825–832.
[5] Colombaro I, Giusti A, Mainardi F. A one parameter class of fractional Maxwell-like models. AIP Conference Proceedings, 2017, 1836, 020003.
[6] Colombaro I, Giusti A, Vitali S. Storage and dissipation of energy in Prabhakar viscoelasticity. Mathematics, 2018, 6, 15.
[7] Garra R, Mainardi F, Maione G. Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal., 2016, 19(5), 1105–1160.
[8] Giusti A. A comment on some new definitions of fractional derivative. arXiv preprint, 2017, arXiv:1710.06852.
[9] Giusti A. Dispersion relations for the timefractional Cattaneo-Maxwell heat equation. J. Math. Phys., 2018, 59, 013506.
[10] Giusti A. On infinite order differential operators in fractional viscoelasticity. Fract. Calc. Appl. Anal., 2017, 20, 854–867.
[11] Giusti A, Colombaro I. Prabhakar-like fractional viscoelasticity. Commun Nonlinear Sci Numer Simul, 2018, 56, 138–143.
[12] Giusti A, Mainardi F. A dynamic viscoelastic analogy for fluid-filled elastic tubes. Mecanica, 2016, 51, 2321–2330.
[13] Giusti A, Mainardi F. On infinite series concerning zeros of Bessel functions of the first kind. Eur. Phys. J. Plus, 2016, 131, 206.
[14] Gorenflo R, Mainardi F. Fractional Calculus: Integral and Differential Equations of Fractional Order. In A. Carpinteri and F. Mainardi (Editors): Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien and New York 1997, pg. 223.
[15] Gross B, Fuoss R. Ladder structures for representation of viscoelastic systems. J. Polymer Science, 1956, 19, 39–50.
[16] Gross B. Ladder structures for representation of viscoelastic systems, II. J. Polymer Science, 1956, 20, 121–131.
[17] Gross B. Electrical analogs for viscoelastic systems. J. Polymer Science, 1956, 20, 371–380.
[18] Mainardi F, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London (2010).
[19] Mainardi F, Garrappa R. On complete monotonicity of the Prabhakar function and non- Debye relaxation in dielectrics. J. Comput. Phys., 2015, 293, 70–80.
[20] Mainardi F, Spada G. Creep, relaxation and viscosity properties for basic fractional models in rheology, Eur. Phys. J. Special Topics, 2011, 193, 133–160.
|