oalogo2  

AUTHOR(S):

Umamaheswari Rengasamy

 

TITLE

Adaptive Intelligent Combined Vector Control scheme for Sensorless Induction Drive

pdf PDF

ABSTRACT

Speed sensorless vector control is the current trend in variable speed industrial AC drives due to its substantial energy efficiency and robustness. The existing Flux Oriented and/or Direct Torque Vector Control of Induction Motor need improvement in dynamic performance interms of ripple free torque and smooth flux operation. In this project a new scheme combining both flux and torque control is developed effectively and its performance during starting, steady state operation and dynamic load changing conditions is analysed by dynamic modeling of a typical three phase three level Voltage source inverter fed induction motor drive with an improved Flux-Torque-speed observer for Feedback in software simulation. The real time implementation of this new technique using DSPIC30F4011 Digital Signal Controller has been proved to be the smart alternative with performance enhancement while maintaining robustness and simplicity.

KEYWORDS

Vector Control, Feedback Observer, VSI fed IM, Speed Sensorless drive, Space Vector Modulation (SVM).

REFERENCES


[1] K. Hasse. Drehzahlgelverfahren für schnelle umkehrantriebe mit stromrichtergespeisten asynchron-kurzschlusslaufer motoren. Reglungstechnik, 1972; vol. 20, pp. 60–66.

[2] F. Blaschke. The principle of field-orientation as applied to the transvector closed-loop control system for rotating-field machines. Siemens Rev., 1972; vol. 34, pp. 217–220.

[3] Depenbrock. M. Direct self-control (DSC) of inverter-fed induction machine. Power Electronics, IEEE Transactions on, Oct 1988; vol.3, no.4, pp.420, 429.

[4] I. Takahashi and T. Noguchi. A new quickresponse and high efficiency control strategy of an induction motor. IEEE Trans. Ind. Appl., Sep./Oct.1986; vol. IA-22, no. 5, pp. 820–827.

[5] Habib Kraiem and Lassaad Sbita. Sensorless Induction Motor Drive based on Deadbeat Torque and Flux Control. CEIT’13, 2013; vol.3, pp.169-173.

[6] Buja. G. S and Kazmierkowski. M. P. Direct torque control of PWM inverter-fed AC Motors—A survey. IEEE Trans. Ind. Electron., Aug 2004; vol. 51, no. 4, pp. 744– 757.

[7] H. Abu-rub1, d. Stando2_, and m.p. Kazmierkowski. Simple speed sensorless dtcsvm scheme for induction motor drives. Bulletin of the polish academy of sciences technical sciences, 2013; vol. 61, no. 2, Doi: 10.2478/bpasts-2013-0028.

[8] J. Holtz. Sensorless control of induction machines—with or without signal injection. IEEE Trans. on Ind.Electron, 2006; 53(1), 7– 30.

[9] L. Xu and M. Fu. A sensorless direct torque control technique for permanent magnet synchronous motors. In Proc. IEEE Ind. Appl. Conf., 1999; vol. 1. pp. 159–164.

[10] A. Tripathi, A. M. Khambadkone, and S. K. Panda. Stator flux based space vector modulation and closed loop control of the stator flux vector in over modulation into sixstep mode. IEEE Trans. Power Electron., May 2004; vol. 19, no. 3, pp. 775–782.

[11] A. Steimel. Direct self-control and synchronous pulse techniques for high power traction inverters in comparison. IEEE Trans. Power Electron. 2004; vol. 51, no. 4, pp. 810– 820.

[12] Boglietti. A, Cavagni A, and Lazzari. M. Computational algorithms for induction-motor equivalent circuit parameter determination— Part I: Resistances and leakage reactances. IEEE Trans. Ind. Electron., Sep 2011; vol. 58, no. 9, pp. 3723–3733.

[13] Boldea. I, Paicu. M. C, and Andreescu.G D. Active flux concept for motion-sensorless unified ac drives. IEEE Trans. Power Electron. Sep 2008; vol. 23, no. 5, pp. 2612– 2618.

[14] Bose, B.K. Power Electronics and Motor Drives Recent Progress and Perspective. Industrial Electronics, IEEE Transactions on, Feb 2009; vol.56, no.2, pp.581, 588.

[15] Casadei. D, Profumo. F, Serra. G and Tani. A. FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans. on Power Electronics, 2002; 17 (5), 779–787.

[16] Grabowski. P. Z, Kazmierkowski. M. P, Bose. B.K and Blaabjerg. F. A simple direct torque neuro-fuzzy control of PWM-inverter-fed induction motor drive. IEEE Trans. Ind.Electron., Aug 2000; vol. 47, no. 4, pp. 863–870.

[17] Guzinski. J and Abu-Rub. H. Speed sensorless induction motor drive with predictive current controller. IEEE Trans. On Industrial Electronics, 2013; 60 (2), 699–709.

[18] Hamouda. M, Blanchette. H. F, K. Al-Haddad, and F. Fnaiech. An efficient DSP–FPGAbased real-time implementation method of SVM algorithms for an indirect matrix converter. IEEE Trans. Ind. Electron., Nov 2011; vol. 58, no. 11, pp. 5024–5031.

[19] M. P. Kazmierkowski and L. Malesani. Current control techniques for three-phase voltage-source PWM converters: A survey. IEEE Trans. Ind. Electron., Oct 1998; vol. 45, no. 5, pp. 691–703.

[20] W.-M. Lin, T.-J. Su and R.-C. Wu. Parameter identification of induction machine with a starting no-load low-voltage test. IEEE Trans. Ind.Electron., Jan 2012; vol. 59, no. 1, pp. 352–360.

[21] E. D. Mitronikas and A. N. Safacas. An improved sensorless vector control method for an induction motor drive. IEEE Trans. Ind. Electron., Dec 2005; vol. 52, no. 6, pp. 1660– 1668.

[22] C. Patel, R. Ramchand, K. Sivakumar, A. Das, and K. Gopakumar. A rotor flux estimation during zero and active vector periods using current error space vector from a hysteresis controller for a sensorless vector control of IM drive. IEEE Trans. Ind.Electron., Jun 2011; vol. 58, no. 6, pp. 2334–2344.

[23] Barbara H. Kenny, and Robert D. Lorenz. Stator and Rotor Flux based Deadbeat Direct Torque Control of Induction Machines. IEEE Transactions on Industry Applications, July/August 2003; vol. 39, no. 4.

[24] LI Jian, YANG Geng, WANG Huan'gang, XU Wenli. Implementation of Direct Torque Control Scheme for Induction Machines with Variable Structure Controllers. TSINGHUA SCIENCE AND TECHNOLOGY ISSN 1007- 0214 13/20 pp593-597, October 2005; vol. 10, no. 5.

[25] Y. Kumsuwan, S. Premrudeepreechacharn and H. A. Toliyat. A New Approach to Direct Torque Control for Induction Motor Drive using Amplitude and Angle of the Stator Flux Control. 2007.

[26] M. Lakshmi Swarupa, G. Tulasi Ram Das and P.V. Raj Gopal. Simulation and Analysis of SVPWM based 2-Level and 3-Level Inverter for Direct Torque Control of Induction Motor. International Journal of Electronic Engineering Research ISSN 0975 – 6450, 2009; vol.1, no. 3 pp. 169–184.

[27] H. Abu-Rub, and J. Guzinski. Simple observer for induction motor speed sensorless control. Proc. 37th Annual Conf IEEE Industrial Electronics Society, 2011; IECON 2011 1, 2024–2029.

[28] Hanumanji Kantari. Direct Torque Control of Induction Motor Using Space Vector Modulation (SVM-DTC). International Journal of Modern Engineering Research (IJMER) www.ijmer.com, Sep-Oct 2012; vol.2, Issue.5, pp-3747-3768 ISSN: 2249- 6645.

[29] Yashasvi V M and Basawaraj Amarapur. Digital Signal Processing Based Speed Control of Induction Motor Drive System. International Journal on Advanced Electrical and Electronics Engineering, (IJAEEE), ISSN (Print): 2278-8948, 2012, 2012; vol.1, Issue-1.

[30] H. ABU-RUB, D. STANDO, and M.P. KAZMIERKOWSKI. Simple speed sensorless DTC-SVM scheme for induction motor drives. BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, 2013; vol. 61, no. 2, 2013DOI: 10.2478/bpasts-2013- 0028.

[31] M.P. Kazmierkowski, L.G. Franquelo, J. Rodriguez, M. Perez, and J.I. Leon. Highperformance motor drives. IEEE Industrial Electronics Magazine, 2011; 5 (4), 6–26.

[32] Journal of Digital Signal Processor. Digital Signal Processing Solution for AC Induction Motor. TEXAS instruments, Copyright © 1996; Texas Instruments Incorporated.

[33] DSPIC30F4011 Data sheet, www.datasheet.com.

Cite this paper

Umamaheswari Rengasamy. (2017) Adaptive Intelligent Combined Vector Control scheme for Sensorless Induction Drive. International Journal of Power Systems, 2, 57-64

 

cc.png
Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0