REFERENCES
[1] Yan, Z., & Chakraborty, D. (2014). Semantics in mobile sensing. Synthesis Lectures on the Semantic Web: Theory and Technology, 4(1), 1- 143.
[2] Wu, F., Li, Z., Lee, W. C., Wang, H., & Huang, Z. (2015). Semantic annotation of mobility data using social media. In Proceedings of the 24th International Conference on World Wide Web (pp. 1253-1263). International World Wide Web Conferences Steering Committee.
[3] Gabrielli, L., Rinzivillo, S., Ronzano, F., & Villatoro, D. (2014). From tweets to semantic trajectories: mining anomalous urban mobility patterns. In Citizen in Sensor Networks (pp. 26- 35). Springer, Cham.
[4] Hasan, S., Zhan, X., & Ukkusuri, S. V. (2013). Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In Proceedings of the 2nd ACM SIGKDD international workshop on urban computing (p. 6). ACM.
[5] Thilakarathna, K., Seneviratne, S., Gupta, K., Kaafar, M. A., & Seneviratne, A. (2017). A deep dive into location-based communities in social discovery networks. Computer Communications, 100, 78-90.
[6] Frhan, A. J. (2017). Website Clickstream Data Visualization Using Improved Markov Chain Modelling In Apache Flume. In MATEC Web of Conferences (Vol. 125, p. 04025). EDP Sciences.
[7] Al-Ariki, H. D. E., & Swamy, M. S. (2017). A survey and analysis of multipath routing protocols in wireless multimedia sensor networks. Wireless Networks, 23(6), 1823-1835.
[8] Cheng, Z., Caverlee, J., Lee, K., & Sui, D. Z. (2011). Exploring millions of footprints in location sharing services. ICWSM, 2011, 81-88.
[9] Rashidi, T. H., Abbasi, A., Maghrebi, M., Hasan, S., & Waller, T. S. (2017). Exploring the capacity of social media data for modelling travel behaviour: Opportunities and challenges. Transportation Research Part C: Emerging Technologies, 75, 197-211.
[10] Zhu, Z., Blanke, U., & Tröster, G. (2014). Inferring travel purpose from crowd-augmented human mobility data. In Proceedings of the First International Conference on IoT in Urban Space(pp. 44-49). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).
[11] Zheng, X., Chen, W., Wang, P., Shen, D., Chen, S., Wang, X., & Yang, L. (2016). Big data for social transportation. IEEE Transactions on Intelligent Transportation Systems, 17(3), 620- 630.
[12] Brockmann, D., Hufnagel, L., & Geisel, T. (2006). The scaling laws of human travel. Nature, 439(7075), 462-465.
[13] Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A. L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779-782.
[14] Cho, E., Myers, S. A., & Leskovec, J. (2011). Friendship and mobility: user movement in location-based social networks. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1082-1090). ACM.
[15] Tarasov, A., Kling, F., & Pozdnoukhov, A. (2013). Prediction of user location using the radiation model and social check-ins. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing (p. 8). ACM.
[16] Simini, F., González, M. C., Maritan, A., & Barabási, A. L. (2012). A universal model for mobility and migration patterns. Nature, 484(7392), 96-100.
[17] Isaacman, S., Becker, R., Cáceres, R., Martonosi, M., Rowland, J., Varshavsky, A., & Willinger, W. (2012). Human mobility modeling at metropolitan scales. In Proceedings of the 10th international conference on Mobile systems, applications, and services (pp. 239-252).
[18] Deb, B., & Basu, P. (2015). Discovering latent semantic structure in human mobility traces. In European Conference on Wireless Sensor Networks (pp. 84-103). Springer, Cham.
[19] Zhang, C., Zhang, K., Yuan, Q., Zhang, L., Hanratty, T., & Han, J. (2016). Gmove: Grouplevel mobility modeling using geo-tagged social media. In KDD: proceedings. International Conference on Knowledge Discovery & Data Mining (Vol. 2016, p. 1305). NIH Public Access.
[20] Wang, Y., Yuan, N. J., Lian, D., Xu, L., Xie, X., Chen, E., & Rui, Y. (2015). Regularity and conformity: Location prediction using heterogeneous mobility data. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1275-1284). ACM.
[21] Jiang, M., Cui, P., Wang, F., Xu, X., Zhu, W., & Yang, S. (2014). Fema: flexible evolutionary multi-faceted analysis for dynamic behavioral pattern discovery. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1186- 1195). ACM.
[22] Jiang, M., Faloutsos, C., & Han, J. (2016). Catchtartan: Representing and summarizing dynamic multicontextual behaviors. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 945-954). ACM.
[23] Yuan, Q., Zhang, W., Zhang, C., Geng, X., Cong, G., & Han, J. (2017, February). Pred: Periodic region detection for mobility modeling of social media users. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (pp. 263-272). ACM.
[24] Zhang, Z., He, Q., & Zhu, S. (2017). Potentials of using social media to infer the longitudinal travel behavior: A sequential modelbased clustering method. Transportation Research Part C: Emerging Technologies, 85, 396-414.
[25] Cuenca-Jara, J., Terroso-Saenz, F., Valdes- Vela, M., Gonzalez-Vidal, A., & Skarmeta, A. F. (2017). Human mobility analysis based on social media and fuzzy clustering. In Global Internet of Things Summit (GIoTS), 2017 (pp. 1-6). IEEE.
[26] Li, Z., Ding, B., Han, J., Kays, R., & Nye, P. (2010). Mining periodic behaviors for moving objects. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1099-1108). ACM.
[27] Loewenstein, Y., Portugaly, E., Fromer, M., & Linial, M. (2008). Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space. Bioinformatics, 24(13), i41-i49.
|