REFERENCES
[1] S. Ould Amrouche, D. Rekioua, T. Rekioua, and S. Bacha, Overview of energy storage in renewable energy systems, International Journal of Hydrogen Energy, Vol. 41, No. 45, 2016, pp. 20914 – 20927.
[2] S. Aissou, D. Rekioua, N. Mezzai, T. Rekioua and, S. Bacha, Modeling and control of hybrid photovoltaic wind power system with battery storage, Energy Conversion and Management, Vol. 89, 2015, pp. 615 – 625.
[3] A. De Gracia and L. F. Cabeza, Phase change materials and thermal energy storage for buildings, Energy Build, Vol. 103 2015; pp. 414 - 419.
[4] P. Steiner, K. Schwaiger, M. Haider, and H. Walter: System analysis of central receiver concepts with high temperature thermal energy storages: Receiver technologies and storage cycles, AIP Conference Proceedings - American Institute of Physics, Vol. 1850, 2017, pp. 110015-1 - 110015-8.
[5] Guruprasad Alva, Yaxue Lin, and Guiyin Fang, An overview of thermal energy storage systems, Energy, Vol. 144, 2018, pp. 341 – 378.
[6] V. Becattini, L. Geissbühler, G. Zanganeh, A. Haselbacher, and A. Steinfeld, Pilot-scale demonstration of advanced adiabatic compressed air energy storage, Part 2: Tests with combined sensible/latent thermal-energy storage, Journal of Energy Storage, Vol. 17, 2018, pp. 140 – 152.
[7] C. Bauer, E. Doujak. Aktueller Stand zur Entwicklung einer modularen Pumpturbine im niedrigen Leistungsbereich. Wasserwirtschaft, Vol. 107, No. 10, 2017, pp. 54 – 58.
[8] S. Flegkas, F. Birkelbach, F. Winter, N. Freiberger, and A. Werner, Fluidized bed reactors for solid-gas thermochemical energy storage concepts - Modelling and process limitations, Energy, Vol. 143, 2018, pp. 615 – 623.
[9] F. Mayrhuber, H. Walter, and M. Hameter, Experimental and Numerical Investigation on a Fixed Bed Regenerator, in: "Proceedings of the 10th International Conference on Sustainable Energy and Environmental Protection", University of Maribor Press, (2017), Bled, Slovenia; 27.06.2017 - 30.06.2017, pp. 14.
[10] C. Zauner, F. Hengstberger, B. Mörzinger, R. Hofmann, and H. Walter, Experimental characterization and simulation of a hybrid sensible-latent heat storage, Applied Energy, Vol. 189, 2017, pp. 506 - 519.
[11] M. Koller, H. Walter, and M. Hameter, Transient Numerical Simulation of the Melting and Solidification Behavior of NaNO3 Using a Wire Matrix for Enhancing the Heat Transfer, Energies, Vol. 9, No. 205, 2016, pp. 1 - 18.
[12] H. Walter, A. Beck, and M. Hameter, Influence of the Fin Design on the Melting and Solidification Process of NaNO3 in a Thermal Energy Storage System, Journal of Energy and Power Engineering, Vol. 9, No. 11, 2015, pp. 913 - 928.
[13] M. Deutsch, F. Birkelbach, C. Knoll, M. Harasek, A. Werner, and F. Winter, An extension of the NPK method to include the pressure dependency of solid state reactions, Thermochimica Acta, Vol. 654, 2017, pp. 168 - 178.
[14] M. Prenzel, V. Danov, S. Will, L. Zigan, T. Barmeier, J. Schäfer, Thermo-fluid dynamic model for horizontal packed bed thermal energy storages, Energy Procedia, Vol. 135, 2017, pp. 51- 61.
[15] D. Brosseau, J. W. Kelton, M. Edgar, K. Chisman, and B. Emms, Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants, Transaction of ASME Journal of Solar Energy Engineering, Vol. 127, 2005 pp. 109 – 116.
[16] E. P. R. Institute, Solar Thermocline Storage Systems: Preliminary Design Study, Tech. Rep. 1019581, Electric Power Research Institute, 2010.
[17] H. P. Garg, S. C. Mullick, A. K. Bhargava, Solar Thermal Energy Storage, D. Reidel, Publishing Company, Dordrecht, 1985.
[18] T. Schumann, Heat transfer: a liquid flowing through a porous prism, Journal of the Franklin Institute, Vol. 208, 1929, pp. 405 – 416.
[19] J. Coutier, E. Farber, Two applications of a numerical approach of heat-transfer process within rock beds, Solar Energy, Vol. 29, No. 6, pp. 451-462, 1982.
[20] K. Ismail, R. Stuginsky, A parametric study on possible fixed bed models for pcm and sensible heat storage, Applied Thermal Engineering, Vol. 19, No. 7, 1999, pp. 757 - 788.
[21] H. Bindra, P. Bueno, J. F. Morris, R. Shinnar, Thermal analysis and exergy evaluation of packed bed thermal storage systems, Applied Thermal Engineering, Vol. 52, No. 2, 2013, pp. 255 – 263.
[22] H. Bindra, P. Bueno, J. F. Morris, R. Shinnar, Sliding flow method for exergetically efficient packed bed thermal storage, Applied Thermal Engineering, Vol. 64, 2014, pp. 201 – 208.
[23] P. Drochter, Design, construction and errection of a fixed bed regenerator, MS-thesis, TU-Wien, 2016 (in German).
[24] N. Wakao, S. Kaguei, T. Fuazkri, Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds, Chemical Engineering Science, Vol. 34, pp. 325-336, 1979.
[25] S. R. P. H. Singh, J. Saini, Performance of a packed bed solar energy storage system having large sized elements with low void fraction, Solar Energy, Vol. 87, pp. 22-34, 2013.
[26] V. Gnielinski, Wärme- und Stoffüber-tragung in Festbetten, Chemie Ingenieur Technik, Vol. 52, No.: 3, 1980, pp. 228 – 236.
[27] M. Hänchen, S. Brückner, A. Steinfeld, High-temperature thermal storage using a packed bed of rocks e heat transfer analysis and experimental validation, Applied Thermal Engineering, Vol. 31, 2011, pp. 1798 – 1806.
[28] F. Mayrhuber, H. Walter, M. Hameter, Experimental and numerical investigation on a fixed bed regenerator, Proceedings of the 10th International Conference on Sustainable Energy and Environmental Protection, University of Maribor Press, 2017.
[29] K. Vafai, M. Sözen, Analysis of energy and momentum transport for fluid flow through a porous bed, Journal of Heat Transfer, Vol. 112, pp. 690-699, 1990.
[30] M. Hänchen, S. Brückner and A. Steinfeld, High-temperature thermal storage using a packed bed of rocks – heat transfer analysis and experimental validation, Applied Thermal Engineering, Vol. 31, Nr.10, 2011 pp. 1798-1806.
[31] F. Brandt, Wärmeübertragung in Dampf-erzeugern und Wärmeaustauschern. 2. edn. Vulkan, 1995. •
[32] M. Heinrich, Bundesweite Übersicht zum Forschungsstand der Massenrohstoffe Kies, Kiessand, Brecherprodukte und Bruchsteine für das Bauwesen hinsichtlich der Vorkommen, der Abbaubetriebe und der Produktion sowie des Verbrauches - Niederösterreich, Wien und Burgenland, interim report Projekt ÜLG 26/1990, Berichte der Geologischen Bundesanstalt, Heft 29, 1995.
[33] V. Cermak, H. G. Huckenholz, L. Rybach, R. Schmid, J. R. Schopper, M. Schuch, D. Stöffler, J. Wohlenberg: Landtolt-Börnstein – Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Gruppe V Geophysik und Weltraumforschung, Volume 1 Physikalische Eigenschaften der Gesteine, Springer Verlag, Berlin Heidelberg, 1982.
[34] K. Kelley, Contribution to the data on theoretical metallurgy: XIII. high-temperature heat-content, heat-capacity, and entropy data for the elements and inorganic compounds, U.S. Government Printing Office, Washington, 1960.
[35] G. Zanganeh, A. Pedretti, S. Zavattoni, M. Barbato, A. Steinfeld, Packed-bed thermal storage for concentrated solar power – Pilot-scale demonstration and industrial-scale design, Solar Energy, vol. 86, pp. 3084-3098, 2012.
[36] W. H. Somerton, Thermal properties and temperature-related behaviour of rock/fluid systems, series in Developments in Petroleum Science, Elsevier, vol. 37, 1st. edition 1992.
|