REFERENCES
[1] A. Arteconi, N.J. Hewitt, F. Polonara, Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems, Appl. Therm. Eng. 51 (2013) 155–165. doi:10.1016/j.applthermaleng.2012.09.023.
[2] K. Merlin, J. Soto, D. Delaunay, L. Traonvouez, Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage, (2016). doi:10.1016/j.apenergy.2016.09.007.
[3] G. Alva, Y. Lin, G. Fang, An overview of thermal energy storage systems, Energy. 144 (2018) 341–378. doi:10.1016/j.energy.2017.12.037.
[4] H. Pointner, W.D. Steinmann, M. Eck, C. Bachelier, Separation of Power and Capacity in Latent Heat Energy Storage, Energy Procedia. 69 (2015) 997–1005. doi:10.1016/j.egypro.2015.03.189.
[5] M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications, Energy Convers. Manag. 45 (2004) 1597–1615. doi:10.1016/j.enconman.2003.09.015.
[6] K. Pielichowska, K. Pielichowski, Phase change materials for thermal energy storage, Prog. Mater. Sci. 65 (2014) 67–123. doi:http://dx.doi.org/10.1016/j.pmatsci.2014.03 .005.
[7] S.S. Chandel, T. Agarwal, Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials, Renew. Sustain. Energy Rev. 67 (2017) 581–596. doi:10.1016/j.rser.2016.09.070.
[8] J. Pereira da Cunha, P. Eames, Thermal energy storage for low and medium temperature applications using phase change materials – A review, Appl. Energy. 177 (2016) 227–238. doi:10.1016/j.apenergy.2016.05.097.
[9] M. Delgado, A. Lázaro, C. Peñalosa, B. Zalba, Experimental analysis of the influence of microcapsule mass fraction on the thermal and rheological behavior of a PCM slurry, Appl. Therm. Eng. 63 (2014) 11–22. doi:10.1016/j.applthermaleng.2013.10.011.
[10] J. Shao, J. Darkwa, G. Kokogiannakis, Development of a novel phase change material emulsion for cooling systems, Renew. Energy. 87 (2016) 509–516. doi:10.1016/j.renene.2015.10.050.
[11] R. Velraj, R.V. Seeniraj, B. Hafner, C. Faber, K. Schwarzer, Heat Transfer Enhancement in a Latent Heat Storage System, Sol. Energy. 65 (1999) 171–180. doi:10.1016/S0038- 092X(98)00128-5.
[12] S. Jegadheeswaran, S.D. Pohekar, Performance enhancement in latent heat thermal storage system: a review, Renew. Sustain. Energy Rev. 13 (2009) 2225–2244.
[13] Y. Yuan, X. Cao, B. Xiang, Y. Du, Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage, Sol. Energy. 136 (2016) 365–378. doi:10.1016/j.solener.2016.07.014.
[14] S.D. Sharma, K. Sagara, Latent Heat Storage Materials and Systems: A Review, Int. J. Green Energy. 2 (2005) 1–56. doi:10.1081/GE- 200051299.
[15] T. Nomura, M. Tsubota, T. Oya, N. Okinaka, T. Akiyama, Heat storage in direct-contact heat exchanger with phase change material, Appl. Therm. Eng. 50 (2013) 26–34. doi:10.1016/j.applthermaleng.2012.04.062.
[16] T. Nomura, M. Tsubota, N. Okinaka, T. Akiyama, Improvement on Heat Release Performance of Direct-contact Heat Exchanger Using Phase Change Material for Recovery of Low Temperature Exhaust Heat, ISIJ Int. 55 (2015) 441–447. doi:10.2355/isijinternational.55.441.
[17] Y. Wang, L. Wang, N. Xie, X. Lin, H. Chen, Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit, Int. J. Heat Mass Transf. 99 (2016) 770–781. doi:10.1016/j.ijheatmasstransfer.2016.03.125.
[18] W. Wang, H. Li, S. Guo, S. He, J. Ding, J. Yan, J. Yang, Numerical simulation study on discharging process of the direct-contact phase change energy storage system, Appl. Energy. 150 (2015) 61–68. doi:10.1016/j.apenergy.2015.03.108.
[19] S. Guo, J. Zhao, W. Wang, G. Jin, X. Wang, Q. An, W. Gao, Experimental study on solving the blocking for the direct contact mobilized thermal energy storage container, Appl. Therm. Eng. 78 (2015) 556–564. doi:http://dx.doi.org/10.1016/j.applthermaleng. 2014.12.008.
[20] H. Nogami, K. Ikeuchi, K. Sato, Fundamental Flow Characteristics in a Small Columnar Latent Heat Storage Bath, ISIJ Int. 50 (2010) 1270–1275. doi:10.2355/isijinternational.50.1270.
[21] X.Y. Li, D.Q. Qu, L. Yang, K. Di Li, Experimental and numerical investigation of discharging process of direct contact thermal energy storage for use in conventional airconditioning systems, Appl. Energy. 189 (2017) 211–220. doi:10.1016/j.apenergy.2016.11.094.
[22] J. Xu, Q. Xiao, Y. Fei, S. Wang, J. Huang, Accurate estimation of mixing time in a direct contact boiling heat transfer process using statistical methods, Int. Commun. Heat Mass Transf. 75 (2016) 162–168. doi:10.1016/j.icheatmasstransfer.2016.04.012.
[23] E. Almeras, V. Mathai, D. Lohse, C. Sun, Experimental investigation of the turbulence induced by a bubble swarm rising within an incident turbulence, (2017) 1091–1112. doi:10.1017/jfm.2017.410.
[24] D. Pjontek, J. Landry, C.A. McKnight, L.P. Hackman, A. Macchi, Effect of a dispersed immiscible liquid phase on the hydrodynamics of a bubble column and ebullated bed, Chem. Eng. Sci. 66 (2011) 2224–2231.
[25] B.C. Hermann, Weingärtner; Franck, Ernst Ulrich; Wiegand, Gabriele; Dahmen, Nicolaus; Schwedt, Georg; Frimmel, Fritz H.; Gordalla, Water, 1. Properties, Analysis and Hydrological Cycle, in: Ullmann’s Encycl. Ind. Chem., Vol. 39, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012: pp. 1–40. doi:10.1002/14356007.a28_001.pub2.
[26] FRAGOL GmbH+Co. KG, Wärmeträgerflüssigkeiten, (2017) 60.
|