REFERENCES
[1] Zheng, P., Wang, H., Sang, Z., Zhong, R.Y., Liu, Y., Liu, C., Mubarok, K., Yu, S., Xu, X.: Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives, Frontiers of Mechanical Engineering, 2018, pp. 1-14.
[2] Hegab, H.A., Darras, B., Kishawy, H.A., Towards sustainability assessment of machining processes, Journal of Cleaner Production, Vol.170, 2018, pp. 694-703
[3] Ghani, J.A., Rizal, M., Haron, C.H.C., Performance of green machining: a comparative study of turning ductile cast iron FCD700, J. Clean. Prod., Vol.85, 2014, pp. 289-292.
[4] Mulyadi, I.H., Balogun, V.A., Mativenga, P.T., Environmental performance evaluation of different cutting environments when milling H13 tool steel, J. Clean. Prod., Vol.108 (A), 2015, pp. 110-120.
[5] Sarıkaya, M., Yılmaz, V., Gullu, A., Analysis of cutting parameters and cooling/lubrication methods for sustainable machining in turning of Haynes 25 superalloy, J. Clean. Prod., Vol.133, 2016, pp. 172-181.
[6] Cassin, C., Boothroyd, G., Lubrication action of cutting fluids, J. Mech. Eng. Sci., Vol.7, No.1, 1965, pp. 67-81.
[7] Alexander, A., Varadarajan, A.S., Philip, P.K., Hard turning with minimum cutting fluid: a viable green alternative on the shop floor. In: Proceedings of the 18th AIMTDR, 1998, pp. 152-155.
[8] Sreejith, P.S., Ngoi, B.K.A., Dry machining: machining of the future, J. Mater. Process. Technol, Vol.101, 2000.
[9] Kuram, E., Ozcelik, B., Demirbas, E., Sık, E., Effects of the Cutting Fluid Types and Cutting Parameters on Surface Roughness and Thrust Force, World Congress on Engineering, Vol.2, 2010.
[10] Gajrani, K.K., Ram, D., Sankar, M.R., Biodegradation and hard machining performance comparison of eco-friendly cutting fluid and mineral oil using flood cooling and minimum quantity cutting fluid techniques, J. Clean. Prod., Vol.165, 2017, pp. 1420-1435
[11] John, J., Bhattacharya, M., Raynor, P., Emulsions containing vegetable oils for cutting fluid application, Colloids Surf, A Physicochem. Eng. Asp., Vol.237, 2004, pp. 141-150.
[12] Gajrani, K.K., Ravi Sankar, M., Past and current status of eco-friendly vegetable oil based metal cutting fluids, Mater. Today Proc., Vol.4, No.2A, 2017, pp. 3786-3795.
[13] Klocke, F., Eisennblatter, G., Dry cutting, CIRP Ann. Manuf. Technol., Vol.46, No.2, 1997, pp. 519-526.
[14] Byrne, G., Scholta, E., Environmentally clean machining processes strategic approach, CIRP Ann. Manuf. Technol., Vol.42, No.1, 1993, pp. 471-474.
[15] Devillez, A., Coz, G.L., Dominiak, S., Dudzinski, D., Dry machining of Inconel 718, workpiece surface integrity, J. Mater. Process. Technol., Vol.211, 2011, pp. 1590-1598.
[16] Jaharah, A.G., Choudhury, I.A., Masjuki, H.H., Hassan, C.H.C., Surface integrity of AISI H13 tool steel in end milling process, Int. J. Mech. Mater. Eng., Vol.4, 2009, pp. 88-92.
[17] Galanis, N.I., Manolakos, D.E., Vaxevanidis, N.M., Comparison between dry and wet machining of stainless steel. In: Proceedings of the 3rd International Conference on Manufacturing Engineering (ICMEN), third ed. Chalkidiki, Greece, 2008.
[18] Khan, A., Maity, K., Influence of cutting speed and cooling method on the machinability of commercially pure titanium (CP-Ti) grade II, J. of Manuf. Process., Vol.31, 2018, pp. 650–661.
[19] Sarma, D.K., Dixit, U.S., A comparison of dry and air-cooled turning of grey cast iron with mixed oxide ceramic tool, J. Mater. Process. Technol., Vol.190, 2007, pp. 160-172.
[20] Mamalis, A.G., Kundrak, J., Gyani, K. On the dry machining of steel surfaces using superhard tools, Int. J. of Advanced Manufacturing Technology, Vol.19, No.3. 2002, pp. 157-162
[21] Rech, J., Influence of cutting tool coatings on the tribological phenomena at the tool-chip interface in orthogonal dry turning, Surf. Coatings Technol., Vol.200, 200, pp. 5132-5139.
[22] Grzesik, W., Kiszka, P., Kowalczyk, D., Rech, J., Claudin, C., Machining of nodular cast iron (PF-NCI) using CBN tools, Procedia CIRP 1, 2012, pp. 483-487.
[23] Ghani, J.A., Othman, K., Rahman, M.N.A., Deros, B.M., Haron, C.H.C., Machined surface of FCD700 ductile cast iron in a dry turning environment using carbide tools, Int. J. Mech. Mater. Eng. (IJMME), Vol.6, No.3, 2011, pp. 362-366.
[24] Dudás, I.; Lierath, F.; Varga, G., Environmentally Friendly Technologies in Production Engineering, Dry cutting and the use of minimum volume of coolants and lubricants, Technical Publisher, Budapest, 2010, (In Hungarian)
[25] Sharma, A.K., Tiwari, A.K., Dixit, A.R., Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review, J. Clean. Prod., Vol.127, 2016, pp. 1-18.
[26] Giasin, K., Ayvar-Soberanis, S., Hodzic, A., Evaluation of cryogenic cooling and minimum quantity lubrication effects on machining GLARE laminates using design of experiments, J. Clean. Prod., Vol.135, 2016, pp. 533-548.
[27] Karkalos, N.E., Markopoulos, A.P., Computational Methods for the Assessment of Nanofluids in Abrasive Processes, Solid State Phenomena, Vol.261, 2017, pp. 201-206.
[28] Kundrak, J.; Mamalis, A.G.; Markopoulos, A., Finishing of hardened boreholes: Grinding or hard cutting? Mat. and Manuf. Process., Vol.19, No.6, 2004, pp. 979-993.
[29] N.N., AISI 1045 Medium Carbon Steel, https://www.azom.com/article.aspx?ArticleID=6130 (03.11.2018).
[30] Taguchi, G., System of experiment design, 1. Experimental design, UNIPUB, Kraus International Publications, White Plains, New York, 1987.
[31] Whitehouse, D.J., Handbook of Surface and Nanometrology, Second edition, CRC Press, Taylor and Francis Group, 2011.
[32] N.N.: Measurements of roundness error, Study aid, Taylor Hobson Precision, 2013, pp.: 1-34.
|