REFERENCES
[1] M. L. Psiaki, Three-axis attitude determination via Kalman filtering of magnetometer data, J. Guid. Control Dyn., vol. 13, no. 3, 1989, pp. 506–514.
[2] P. Sekhavat, Q. Gong, and I. M. Ross, NPSAT I parameter estimation using unscented Kalman filter, in Proc. 2007 American Control Conference, 2007, pp. 4445–4451.
[3] K. Vinther, K. F. Jensen, J. A. Larsen, and R. Wisniewski, Inexpensive Cubesat Attitude Estimation Using Quaternions And Unscented Kalman Filtering, Autom. Control Aerosp., vol. 4, 2011.
[4] C. Hajiyev and H. E. Soken, Robust adaptive unscented Kalman filter for attitude estimation of pico satellites, Int. J. Adapt. Control Signal Process., vol. 28, no. 2, 2014, pp. 107–120.
[5] H. E. Soken, C. Hajiyev, and S. Sakai, Robust Kalman Filtering for Small Satellite Attitude Estimation in the Presence of Measurement Faults, Eur. J. Control, vol. 20, 2014, pp. 64–72.
[6] H. E. Soken and C. Hajiyev, UKF for the identification of the pico satellite attitude dynamics parameters and the external torques on IMU and magnetometer measurements, in 4th International Conference on Recent Advances in Space Technologies, 2009, pp. 547–552.
[7] C. Hajiyev and M. Bahar, Multichannel Kalman Filter Based on Preliminary Data Compression for the Satellite Rotational Motion Parameters Identification, in Proc. of the 3rd International Conference on Nonlinear Problems in Aviation and Aerospace, vol. 1, 2000, pp. 277–284.
[8] C. Hajiyev and M. Bahar, Attitude Determination and Control System Design of the ITU-UUBF LEO1 Satellite, Acta Astronaut., vol. 52, no. 2–6, 2003, pp. 493– 499.
[9] X. Yun and E. R. Bachman, Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking, IEEE Trans. Robot., vol. 22, no. 6, 2006, pp. 1216–1227.
[10] B. Y. Mimasu and J. C. Van der Ha, Attitude determination concept for QSAT, Trans. Japan Soc. Aeronaut. Sp. Sci. Aerosp. Technol. Japan, vol. 7, 2009, pp. 63–68.
[11] W. Quan, L. Xu, H. Zhang, and J. Fang, Interlaced Optimal-REQUEST and unscented Kalman filtering for attitude determination, Chinese J. Aeronaut., vol. 26, no. 2, 2013, pp. 155–449.
[12] D. Cilden, C. Hajiyev, and H. E. E. Soken, Attitude and Attitude Rate Estimation for a Nanosatellite Using SVD and UKF (Accepted). Istanbul, Turkey, 2015, pp. 695– 0 200 400 600 800 1000 1200 x (deg/s) 10-3 -5 0 5 Absolute Errors of Angular Rates 0 200 400 600 800 1000 1200 y (deg/s) 10-3 -5 0 5 Time(sec) 0 200 400 600 800 1000 1200 z (deg/s) 10-3 -2 0 2 700.
[13] C. Hajiyev and D. Cilden, Integrated SVD/EKF for Small Satellite Attitude and Rate Estimation, in 6th European Conference for Aeronautics and Space Sciences (EUCASS), 2015, p. 8P.
[14] C. Hajiyev, D. Cilden, and Y. Somov, Gyrofree attitude and rate estimation for a small satellite using SVD and EKF, Aerosp. Sci. Technol., vol. 55, 2016, pp. 324–331.
[15] C. Hajiyev and D. Cilden Guler, Review on gyroless attitude determination methods for small satellites, Prog. Aerosp. Sci., vol. 90, 2017, pp. 54–66.
[16] J. R. Wertz, Spacecraft Attitude Determination and Control, no. 73. Dordrecht, Holland: Kluwer Academic Publishers, 1988.
[17] C. Hajiyev and D. Cilden, Nontraditional Approach to Satellite Attitude Estimation, Int. J. Control Syst. Robot., vol. 1, 2016, pp. 19–28.
[18] E. Thébault, C. C. Finlay, C. D. Beggan, P. Alken, and E. Al., International Geomagnetic Reference Field: the 12th generation, Earth, Planets Sp., vol. 67, no. 1, 2015, p. 79.
[19] G. Wahba, Problem 65-1: A Least Squares Estimate of Satellite Attitude, Soc. Ind. Appl. Math. Rev., vol. 7, no. 3,1965, p. 409.
|