REFERENCES
[1] ISO 5014-86
[2] ISO 8895:2004.
[3] O. Peitl, E.D. Zanotto, Thermal shock properties of chemically toughened borosilicate glass, Journal of Non-Crystalline Solids, 247, 1999, pp 39-49.
[4] W.D. Kingery, Introduction to Ceramics, John Wiley and Sons, New York, London, 1966.
[5] D.P.H. Hasselman, Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics, J. Am. Cer. Soc., 1969, Vol. 52, pp. 600-604.
[6] A.V. Zabolotskii. Mathematical simulation of the thermal stability of magnesium oxide. Refractories and Industrial Ceramics. V. 52, № 3, 2011, p. 170 - 177.
[7] J. Lin, I. Song, M. Kong, D. Huang. Features of the destruction of heterogeneous materials under dynamic loading. Modeling by the method of mobile cellular automata. Physical mesomechanics. 2002, Vol. 5, No. 4, p. 41-46 (in Russian).
[8] P.V. Makarov, M.O. Eremin. Modeling of the destruction of ceramic composite materials under uniaxial compression. Bulletin of Tomsk State University. 2013, No. 1 (21), p. 61 - 74. (in Russian)
[9]A. V. Zabolotsky. Mathematics modeling of thermal shock in refractory linings. AISTech 2011 Proceedings, V.II, p. 1279 – 1287.
[10]L. J. Segerlind, Applied finite element analysis, New York, 1976..
[11]J. von Neumann. Theory of self reproducing automata.- University of Illinois, Urbana. USA. 1966.
[12] A.D. Svenchansky. Electrotechnological industrial installations. Textbook for high schools. - Moscow: Energoizdat, 1982. - 400 p. (in Russian)
[13] V.M. Fokine, G.P. Boykov, Yu.V. Vidin. Fundamentals of technical thermophysics. // M .: "Mechanical Engineering Publishing-1". 2004. (in Russian)
[14] A. V. Zabolotsky. Modeling of the temperature field of the casting ladle lining. J. of Engineering physics and thermophysics. v. 84, №2, 2011, p. 342 – 348.
[15] A.V. Zabolotsky. Modeling of temperature fields in bodies of complex shape. XIV Minsk International Forum on Heat and Mass Exchange. Minsk 2012. Vol. 1. p. 693 - 694. (in Russian)
[16] S. G. Psakhier, G.-P. Ostermeier, A.I. Dmitriev, E.V. Shilko, S.Yu. Korostelev. The method of mobile cellular automata as a new direction of discrete computational mechanics. I. Theoretical description. Physical mesomechanics. 2000, vol. 3, No. 2, p. 5 - 13. (in Russian)
[17] I.S. Konovalenko, A.Yu. Smolin, S.G. Psachier. Multilevel modeling of deformation and destruction of brittle porous materials based on the method of mobile cellular automata. Physical mesomechanics. 2009, Vol. 12, No. 5, p 29 - 36. (in Russian).
[18] L. A. Naumov. The method of introducing generalized coordinates and a tool for automating the design of software for computing experiments using cell automata Thesis for the PhD degree. St. Petersburg. 2007. (in Russian)
[19] Mountain encyclopedia: in 5 parts / Ch. Editor E. Kozlovsky-M .: Sov. encycl., 1984-1991. (in Russian)
[20] V. S. Gorshkov, V. G. Saveliev, N. F. Fedorov. Physical Chemistry of Silicates and Other Refractory Compounds: Proc. for universities. M .: "Higher School", 1988. (in Russian)
[21] GOST 7875.1-94. Refractory products. Method for determining the thermal stability on bricks. (in Russian)
[22]G.P. Cherepanov. Mechanics of brittle fracture. M .: "Science", 1974. (in Russian)
[23]L.V. Gurvich, G.V. Karachevtsev, V.N. Kondratiev, Yu. A. Lebedev, V.A. Medvedev, V.K. Potapov, Yu.S. Khodeev. The energy of rupture of chemical bonds. Potentials of ionization and electron affinity. M., "Science", 1974, 351 p. (in Russian).
[24]J.P. Hirth, J.Lothe. Theory of dislocations. New York, 1970.
[25] G.F. Sarafanov, V.N. Perevezentsev. The origin of microcracks in a fragmented structure. Bulletin of the Lobachevsky Nizhny Novgorod University. 2010, No. 5 (2), p. 90-94. (in Russian)
[26] D.A. Kazakov, S.A. Kapustin, Yu.G. Short. Modeling of processes of deformation and destruction of materials and structures. N. Novgorod: Publishing house of Nizhny Novgorod State University, 1999, 226 p. (in Russian)
[27] E. Ya. Litovsky, N. A. Puchkevich. Thermophysical properties of refractories. M .: Metallurgy, 1982. (in Russian)
[28] Physical quantities: Handbook. Moscow: Energoatomizdat, 1991. (in Russian)
[29] A.V. Zabolotsky, LM Axelrod, V.G. Ovsyannikov. Volumetric modeling of thermal stresses in the lining of the circulation vacuum. Steel, 2014 №12 page 10-14. (in Russian).
|