REFERENCES
[1] S.F. Khahro, K. Tabbassum, A.M. Soomro, L. Dong, X. Liao, “Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan”, Energy Conversion and Management, vol. 78, (2014) February, pp. 956-967.
[2] A.M. Borchers, I. Xiarchos, J. Beckman, “Determinants of wind and solar energy system adoption by U.S. farms: a multilevel modeling approach”, Energy Policy, vol. 69, (2014) June, pp. 106-115.
[3] A. Mostafaeipour, “Economic evaluation of small wind turbine utilization in Kerman, Iran”, Energy Conversion and Management, vol. 73, (2013) September, pp.214-225.
[4] R. Velo, P. López, F. Maseda, “Wind speed estimation using multilayer perceptron”, Energy Conversion and Management, vol. 81, (2014) May, pp. 1-9.
[5] Z. Guo, D. Chi, J. Wu, W. Zhang, “A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm”, Energy Conversion and Management, vol. 84, (2014) August, pp. 140-151.
[6] M. Yesilbudak, S. Sagiroglu, I. Colak, “A new approach to very short term wind speed prediction using k-nearest neighbor classification”, Energy Conversion and Management, vol. 69, (2013) May pp. 77-86.
[7] D. Petkovic, S. Shamshirband, N.B. Anuar, H. Saboohi, et al, “An appraisal of wind speed distribution prediction by soft computing methodologies: a comparative study”, Energy Conversion and Management, vol. 84 (2014) August, pp. 133-139.
[8] J.L. Torres, A. García, M.D. Blas, et al, “Forecast of hourly average wind speed with ARMA models in Navarre”, Solar Energy, vol. 79, no. 1, (2005) July, pp. 65-77.
[9] P. Louka, G. Galanis, N. Siebert, et al, “Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 96, no. 12, (2008) March, pp. 2348-2362.
[10] P. Louka, G. Galanis, N. Siebert, et al, “Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 96, no. 12, (2008) December, pp. 2348-2362.
[11] J.L. Torres, A. García, M.D. Blas, et al, “Forecast of hourly average wind speed with ARMA models in Navarre”, Solar Energy, vol. 79, no. 1, (2005) July, pp. 65-77.
[12] J.A. Carta, S. Velázquezb, J.M. Matías, “Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site”. Energy Conversion and Management, vol. 52, no. 2, (2011) February, pp. 1137-1149.
[13] K. G. Sheela, S.N. Deepa, “Neural network based hybrid computing model for wind speed prediction”, Neurocomputing, vol. 122, no. 25, (2013) December, pp. 425-429.
[14] T. G. Barbounis, J.B. Theocharis, “A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation”, Neurocomputing vol. 70, no. 7-9, (2007) March, pp. 1525-1542.
[15] G. Grassi, P. Vecchio, “Wind energy prediction using a two-hidden layer neural network”, Wind energy prediction using a two-hidden layer neural network, vol. 15, no. 9, (2010) September, pp. 2262- 2277.
[16] B. S. Morenoa, S. S. Sanza, L. C. Calvoa, J. G. Morenoa, S. J. Fernándeza, L. Prietob, “Very fast training neural-computation techniques for real measure-correlate-predict wind operations in wind farms”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 116, (2013) May, pp. 49-60.
[17] M. Serinivas, L.M. Patnaik, “Adaptive probabilities of crossover and mutation in genetic algorithms”, IEEE Trans on Systems, Man and Cybernetics, vol. 24, no. 4, (1994) pp. 656-667.
|