REFERENCES
[1] W. HODGES, A shorter model theory, Cambridge University Press, Cambridge, 1997.
[2] H.J. ROGERS, Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York, 1967.
[3] YU.L. ERSHOV and S.S. GONCHAROV, Constructive models, Transl. from the Russian. (English) Siberian School of Algebra and Logic. New York, NY: Consultants Bureau. XII, 293 pp.
[4] M.G. PERETYAT’KIN. First-order combinatorics and model-theoretical properties that can be distinct for mutually interpretable theories. Siberian Advances in Mathematics, 2016, Vol. 26, No 3, pp. 196-214.
[5] J.R. SHOENFIELD, Mathematical logic, Addison-Wesley, Massachusetts, 1967.
[6] M.G. PERETYAT’KIN, Invertible multidimensional interpretations versus virtual isomorphisms of first-order theories, Mathematical Journal, No. 4, 2016, 36 pp.
[7] M.G. PERETYAT’KIN, Finitely axiomatizable theories, Plenum, New York, 1997, 297 pp.
[8] L. KALMAR, Die Z¨uruckf¨uhrung des Entscheidungsproblems auf den Fall von Formeln mit einer einzigen, bin¨aren Funktionsvariablen, Composito Mathematica, v. 4, 1936, p. 137–144 (cf. Ref. 445 in Sect. 47 at: A. Church, Introduction in Mathematical Logic, Vol. 1, Princenton, 1956).
[9] R.L. VAUGHT, Sentences true in all constructive models, J. Symbolic Logic, v. 25, No. 1, 1961, p. 39–59.
[10] W. HANF, Isomorphism in elementary logic, Notices of American Mathematical Society, 9 (1962), p.146–147.
[11] M.G. PERETYAT’KIN, Introduction in firstorder combinatorics providing a conceptual framework for computation in predicate logic, In: Computation tools 2013, IARIA, 2013, pp. 31- 36.
[12] M.G. PERETYAT’KIN, Canonical mini construction of finitely axiomatizable theories as a weak release of the universal construction, Mathematical Journal, No. 3, 2014, p. 48–89.
[13] M.G. PERETYAT’KIN,There is a virtual isomorphism between any two undecidable predicate calculi of finite signatures, International conference ”Maltsev’s readings”, Russia, Novosibirsk, 21-25 November 2016, Abstracts, p. 208.
[14] D.MYERS, An interpretive isomorphism between binary and ternary relations, Structures in Logic and Computer Science: A Selection of Essays in Honor of Andrzej Ehrenfeucht, 1997, p. 84–105
[15] W. HANF, Primitive Boolean algebras, Proceedings of Symposium in Honor of Alfred Tarski (Berkeley, 1971), Proc. Symp. Pure Math., vol 25, Amer. Math. Soc. Providence, R.I., 1974, p. 75–90.
[16] W. HANF, The Boolean algebra of Logic, Bull. American Math. Soc., v. 31, 1975, p. 587–589.
[17] W. HANF, Model-theoretic methods in the study of elementary logic, Symposium on Theory of Models, North-Holland, Amsterdam, 1965, p. 33–46.
[18] W. HANF, D.MYERS, Boolean sentence algebras: Isomorphism constructions, J. Symbolic Logic, v. 48, No. 2, 1983, p. 329–339.
[19] D.MYERS, Lindenbaum–Tarski algebras, Handbook of Boolean algebras, Ed: J.D. Monk, R.Bonnet, Elsevier Science Publishers, 1989, p. 1167–1199.
[20] M.G. PERETYAT’KIN, Finitely axiomatizable theories, in: Proceedings of International Congress of Mathematicians, Berkeley, California, USA (1986) vol. 1, p. 322–330 (Russian). English translation in: Amer. Math. Soc. Transl. 2, v. 147, 1990, p. 11–19.
[21] M.G. PERETYAT’KIN, Semantic universal classes of models, Algebra and Logic, 1991, v.30, No 4, p. 414–434.
[22] M.G. PERETYAT’KIN, Semantic universality of theories over superlist, Algebra and Logic, 1992, v.30, No 5, p. 517–539.
|