Klaus Müller, Fabian Rachow, Johannes Israel, Evgenia Charlafti, Carola Schwiertz, Dieter Scmeisser



Direct Methanation of Flue Gas at a Lignite Power Plant

pdf PDF


The combustion of fossil fuels results in CO2 emission, which is one of the primary causes of global warming. An important approach for solving this problem is the fixation, the chemical utilization and the recycling of CO2. Therefore, we investigate the catalytic conversion of CO2 with H2.into methane (CH4) with an upscaled test station at a brown coal power plant. In a completely new strategy, we realize the direct conversion of the CO2 content of the flue gas, without a cleaning process like amine scrubbing or optimized combustion like oxyfuel. Our experiments are performed in matters of catalytic performance, heat production and stability of the catalytic Sabatier process, as a function of the gas flow rate. The catalytic performance is investigated with a simulated composition of flue gas and under real conditions directly at the power plant. The CH4 production by the Sabatier process is realized with a maximum input flow rate of near 50Nm3/h, with 30Nm3/h flue gas and 20Nm3/h hydrogen. For these values, the necessary power scale for hydrogen generation by electrolysis is around 100kW. With synthetic and real flue gas, a conversion up to 99% (for hydrogen surplus) with 100% selectivity is stabilized. The reaction operates in thermal steady state equilibrium without any external energy supply. In consequence, the process of CO2 recycling could be integrated directly as a post combustion process of conventional power plants, without an expensive capturing step, for example.


CO2 recycling, Power to Gas (PtG), Synthetic Natural Gas (SNG), Sabatier-Reaction, Flue Gas


[1] J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wie, Y. Sun, A short review of catalysis for CO2 conversion, Catal. Today, Vol.148, No.3-4, 2009, pp. 221-231.

[2] G. A. Du, S. Lim, Y. H. Yang, C. Wang, L. Pfefferle, G.L. Haller, Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction, Journal of Catalysis, Vol.249, No.2, 2007, pp. 370–379.

[3] http://www.powertogas.info/power-to-gas/pilotprojekte-im-ueberblick/

[4] A.B. Kohl, R.B. Nielsen, Gas Purification, Gulf Publishing Company, 1997, pp. 40-186.

[5] G. Scheffknecht, L. Al-Makhadmeh, U. Schnell, J. Maier, Oxy-fuel coal combustion- A review of the current state-of-the-art, International Journal of Greenhouse Gas Control, Vol.5S, 2011, pp.16–35.

[6] K. Müller, M. Städter, F. Rachow, D. Hoffmannbeck, D. Schmeißer, Sabatier- based CO2-Methanation by Catalytic Conversion, Environmental Earth Sciences, Vol.70, No.8, 2013, pp. 3771-3778.

[7] K. Müller, M. Fleige, F. Rachow, D. Schmeißer, Sabatier based CO2-methanation of flue gas emitted by conventional power plants, Energy Procedia, Vol.40, 2013, pp. 240-248.

[8] M. Fleige, Direkte Methanisierung von CO2 aus dem Rauchgas konventioneller Kraftwerke -Experimentelle Untersuchung und Verfahrens-aspekte, Springer Spektrum, 2015, doi:10.1007/978-3-658-09225-2.

[9] D. Li, Y. Guo, Y. Li, P. Ding, Q. Wang, Z., Cao, Air Pollutant Emissions from Coal-Fired Power Plants, Open Journal of Air Pollution, Vol.1, No.2, 2012, pp. 37-41.

[10] J. Israel, Sabatierbasierte autothermale katalytische Rauchgasmethanisierung im Technikumsmaßstab und Rückverstromung im BHKW, Dissertation BTU Cottbus, 2016.

[11] F. Rachow, Prozessoptimierung für die Methanisierung von CO2 -Vom Labor zum Technikum, Dissertation BTU Cottbus, 2017.

[12] V. Nikolic, G. Tasik, A. Maksic, D. Saponjic, S. Miulovic, M. Marceta Kaninski, Raising efficiency of hydrogen generation from alkaline water electrolysis–Energy saving, International Journal of Hydrogen Energy, Vol.22, No.22, 2010, pp. 12369-12373.

[13] M. Städter, K. Müller, F. Rachow, M. Richter, D. Schmeißer: Ambient pressure thermal desorption spectroscopy (AP-TDS) of NiO/SiO2 catalysts, Environmental Earth Sciences, Vol.70, No.8, 2013, pp. 3779-3784.

[14] R. Dittmeyer, Chemische Technik. Prozesse und Produkte. Band 1, Kapitel 5, Katalyse, 5. Auflage, Wiley-VCH-Verlag, Weinheim, 2006.

[15] M. Städter, Integration eines Quadrupolmassenspektrometers zur Charakterisierung von Hochdruckreaktionen in Katalyse und ALD. Diploma Thesis, Technical University Cottbus, 2011.

[16] J. Hagen, Chemiereaktoren, Auslegung und Simulation, Wiley-VCH, Weinheim, 2004.

[17] J. Gao, Y. Wang, Y. Ping, D. Hu, G.Gu, F.Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Advances, Vol. 2, No.6, 2012, pp. 2358-2368.

[18] NIST Chemistry WebBook, National Institute of Standards and technology, http://webbook.nist.gov/chemistry/

[19] M. Ballhorn, Entwicklung von Polymermembranen für die Abtrennung von Kohlendioxid aus Gasströmen, Dissertation RWTH Aachen 2000.

Cite this paper

Klaus Müller, Fabian Rachow, Johannes Israel, Evgenia Charlafti, Carola Schwiertz, Dieter Scmeisser. (2017) Direct Methanation of Flue Gas at a Lignite Power Plant. International Journal of Environmental Science, 2, 425-432


Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0