oalogo2  

AUTHOR(S):

Emad A. Az-Zobi, Basem S. Masaedeh

 

TITLE

A Variety of Wave Amplitudes for the Conformable Fractional (2+1)-dimensional Ito Equation

pdf PDF

ABSTRACT

The conformable fractional derivative and adequate fractional complex transform are implemented to discuss the fractional higher-dimensional Ito equation analytically. The Jacobi elliptic function method and Riccati equation mapping method are successfully used for this purpose. New exact solutions in terms of linear, rational, periodic and hyperbolic functions for the wave amplitude are derived. The obtained solutions are entirely new and can be considered as a generalization of the existing results in the ordinary derivative case. Numerical simulations of some obtained solutions with special choices of free constants and various fractional orders are displayed.

KEYWORDS

Conformable fractional derivative; Jacobi elliptic function method; Riccati equation mapping method; Ito equation; Nonlinear dynamics; Exact solution

 

Cite this paper

Emad A. Az-Zobi, Basem S. Masaedeh. (2021) A Variety of Wave Amplitudes for the Conformable Fractional (2+1)-dimensional Ito Equation. International Journal of Environmental Science, 6, 116-133

 

cc.png
Copyright © 2021 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0