REFERENCES
[1] E. Alvares Cherman, J. Metz and M. C. Monard. A Simple Approach to Incorporate Label Dependency in Multi-label Classification. In Advances in Soft Computing. Springer Berlin Heidelberg, 2010. pp. 33–43. doi:10.1007/ 978-3-642-16773-7 3. [1] E. Alvares Cherman, J. Metz and M. C. Monard. A Simple Approach to Incorporate Label Dependency in Multi-label Classification. In Advances in Soft Computing. Springer Berlin Heidelberg, 2010. pp. 33–43. doi:10.1007/ 978-3-642-16773-7 3.
[2] F. Charte, A. Rivera, M. J. del Jesus and F. Herrera. Concurrence among Imbalanced Labels and Its Influence on Multilabel Resampling Algorithms. In Lecture Notes in Computer Science. Springer International Publishing, 2014. pp. 110–121. doi:10.1007/978-3-319-07617-1 10.
[3] F. Charte, A. J. Rivera, M. J. del Jesus and F. Herrera. QUINTA: A question tagging assistant to improve the answering ratio in electronic forums. In IEEE EUROCON 2015 - International Conference on Computer as a Tool (EUROCON). IEEE. doi:10.1109/eurocon.2015. 7313677.
[4] P. N. da Silva, E. C. Gonc¸alves, A. Plastino and A. A. Freitas. Distinct Chains for Different Instances: An Effective Strategy for Multi-label Classifier Chains. In Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2014. pp. 453–468. doi: 10.1007/978-3-662-44851-9 29.
[5] J. D´ıez, O. Luaces, J. J. del Coz and A. Bahamonde. Optimizing different loss functions in multilabel classifications. Progress in Artificial Intelligence, 3(2), (2014), pp. 107–118. doi: 10.1007/s13748-014-0060-7.
[6] J. Demsar. Statistical comparisons of classifiers ˇ over multiple data sets. The Journal of Machine Learning Research, 7, (2006), pp. 1–30.
[7] M. Dhar. On Cardinality of Fuzzy Sets. International Journal of Intelligent Systems and Applications, 5(6), (2013), pp. 47–52. doi:10.5815/ ijisa.2013.06.06.
[8] M. Friedman. A Comparison of Alternative Tests of Significance for the Problem of m Rankings. The Annals of Mathematical Statistics, 11(1), (1940), pp. 86–92. doi:10.1214/aoms/ 1177731944.
[9] V. Garc´ıa, J. Sanchez and R. Mollineda. On ´ the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowledge-Based Systems, 25(1), (2012), pp. 13–21. doi:10.1016/j.knosys.2011.06.013.
[10] E. Gibaja and S. Ventura. Multi-label learning: a review of the state of the art and ongoing research. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(6), (2014), pp. 411–444. doi:10.1002/widm.1139.
[11] E. C. Gonc¸alves, A. Plastino and A. A. Freitas. Simpler is Better. In Proceedings of the 2015 on Genetic and Evolutionary Computation Conference - GECCO ’15. ACM Press. doi: 10.1145/2739480.2754650.
[12] E. C. Goncalves, A. Plastino and A. A. Freitas. A Genetic Algorithm for Optimizing the Label Ordering in Multi-label Classifier Chains. In 2013 IEEE 25th International Conference on Tools with Artificial Intelligence. IEEE. doi: 10.1109/ictai.2013.76.
[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten. The WEKA data mining software. ACM SIGKDD Explorations Newsletter, 11(1), (2009), p. 10. doi: 10.1145/1656274.1656278.
[14] M. A. Hall. Correlation-based feature selection for machine learning. Ph.D. thesis, The University of Waikato, 1999.
[15] D. J. Hand and K. Yu. Idiot’s Bayes: Not So Stupid after All? International Statistical Review / Revue Internationale de Statistique, 69(3), (2001), p. 385. doi:10.2307/1403452.
[16] S. Holm. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, 6(2), (1979), pp. 65–70. ISSN 03036898. doi:10.2307/4615733.
[17] J.-Y. Jiang, S.-C. Tsai and S.-J. Lee. FSKNN: Multi-label text categorization based on fuzzy similarity and k nearest neighbors. Expert Systems with Applications, 39(3), (2012), pp. 2813– 2821. doi:10.1016/j.eswa.2011.08.141.
[18] T. Joachims. Text Categorization with Suport Vector Machines: Learning with Many Relevant Features. In Proc. 10th European Conference on Machine Learning. pp. 137–142.
[19] O. Luaces, J. D´ıez, J. Barranquero, J. J. del Coz and A. Bahamonde. Binary relevance efficacy for multilabel classification. Progress in Artifi- cial Intelligence, 1(4), (2012), pp. 303–313. doi: 10.1007/s13748-012-0030-x.
[20] J. Read, L. Martino and D. Luengo. Effi- cient monte carlo methods for multi-dimensional learning with classifier chains. Pattern Recognition, 47(3), (2014), pp. 1535–1546. doi:10.1016/ j.patcog.2013.10.006.
[21] J. Read and R. Peter. Meka:http://meka.sourceforge.net/, 2017. URL http://meka.sourceforge.net/.
[22] J. Read, B. Pfahringer, G. Holmes and E. Frank. Classifier Chains for Multi-label Classification. In Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2009. pp. 254–269. doi:10.1007/978-3-642-04174-7 17.
[23] J. Read, B. Pfahringer, G. Holmes and E. Frank. Classifier chains for multi-label classification. Machine Learning, 85(3), (2011), pp. 333–359. doi:10.1007/s10994-011-5256-5.
[24] C. Sanden and J. Z. Zhang. Enhancing multilabel music genre classification through ensemble techniques. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information - SIGIR ’11. ACM Press. doi:10.1145/2009916.2010011.
[25] R. Senge, J. J. del Coz and E. Hullermeier. ¨ On the Problem of Error Propagation in Classifier Chains for Multi-label Classification. In Studies in Classification, Data Analysis, and Knowledge Organization. Springer International Publishing, 2013. pp. 163–170. doi:10.1007/ 978-3-319-01595-8 18.
[26] E. Spyromitros-Xioufis, G. Tsoumakas, W. Groves and I. Vlahavas. Multi-target regression via input space expansion: treating targets as inputs. Machine Learning, 104(1), (2016), pp. 55–98. doi:10.1007/s10994-016-5546-z.
[27] E. Spyromitros-Xioufis, G. Tsoumakas, W. Groves and I. Vlahavas. Multi-target regression via input space expansion: treating targets as inputs. Machine Learning, 104(1), (2016), pp. 55–98. doi:10.1007/s10994-016-5546-z.
[28] J. T. Tomas, N. Spola ´ or, E. A. Cherman and ˆ M. C. Monard. A Framework to Generate Synthetic Multi-label Datasets. Electronic Notes in Theoretical Computer Science, 302, (2014), pp. 155–176. doi:10.1016/j.entcs.2014.01.025.
[29] P. Trajdos and M. Kurzynski. PermutationBased Diversity Measure for Classifier-Chain Approach. In Advances in Intelligent Systems and Computing. Springer International Publishing, 2017. pp. 412–422. doi:10.1007/ 978-3-319-59162-9 43.
[30] G. Tsoumakas, I. Katakis and I. Vlahavas. Effective and efficient multilabel classification in domains with large number of labels, 2008. p. 30–44.
[31] Y. Wei, W. Xia, M. Lin, J. Huang, B. Ni, J. Dong, Y. Zhao and S. Yan. HCP: A Flexible CNN Framework for Multi-Label Image Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(9), (2016), pp. 1901– 1907. doi:10.1109/tpami.2015.2491929.
[32] F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1(6), (1945), p. 80. doi:10.2307/3001968.
[33] J.-S. Wu, S.-J. Huang and Z.-H. Zhou. Genome-Wide Protein Function Prediction through Multi-Instance Multi-Label Learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(5), (2014), pp. 891–902. doi:10.1109/tcbb.2014.2323058.
[34] J. Xu. Fast multi-label core vector machine. Pattern Recognition, 46(3), (2013), pp. 885–898. doi:10.1016/j.patcog.2012.09.003.
[35] L. Zadeh. Fuzzy sets. Information and Control, 8(3), (1965), pp. 338–353. doi:10.1016/ s0019-9958(65)90241-x.
[36] P. Zhang, Y. Yang and X. Zhu. Approaching Multi-dimensional Classification by Using Bayesian Network Chain Classifiers. In 2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics. IEEE. doi:10.1109/ihmsc.2014.129.
[37] Z.-H. Zhou, M.-L. Zhang, S.-J. Huang and Y.-F. Li. Multi-instance multi-label learning. Artifi- cial Intelligence, 176(1), (2012), pp. 2291–2320. doi:10.1016/j.artint.2011.10.002.
|