REFERENCES
[1] Fukushima H., Kim T., Sugie T. Adaptive model predictive control for a class of constrained linear systems based on comparison model. Automatica, 2007,43 (2):301–308.
[2] Camacho E.F., Bordons C. Model Predictive Control. Springer-Verlag, Berlin, 2004.
[3] Ramos, C. Martínez, M. Sanchis, J. and Salcedo, J. V. Robust constrained receding-horizon predictive control via bounded data uncertainties. Automatica, 2009:79;1452-1471.
[4] Podlubny I. Fractional Differential Equations, Academie Press, New York, 1999.
[5] Sun H.H., Charef A., Tsao Y., Onaral B. Analysis of polarization dynamics by singularity decomposition method. Annals of Biomedical Engineering, 1992,20:321-335
[6] Oustaloup A. From fractality to non-integer derivation through recursivity, a property common to these two concepts: a fundamental idea from a new process control strategy. 12th IMACS World Conf., Paris, 1988, 203–8.
[7] Oustaloup A. La commande CRONE (Commande Robuste d’Ordre Non Entier). Paris, Hermès,1991
[8] Raynaud H. F., Zergainoh A. State-space representation for fractional order controllers. Automatica, 2000, 36:1017–1021.
[9] A. Pisano, M. R. Rapaić, Z. D. Jelicić, and E. Usai. Sliding mode control approaches to the robust regulation of linear multivariable fractionalorder dynamics. International Journal of Robust and Nonlinear Control 2010;20:2045–2056. 0 50 100 150 200 250 300 350 400 450 0 20 40 60 80 Temperature(C°) Set point Output 0 50 100 150 200 250 300 350 400 450 0 1 2 3 4 5 Input(v) Input 0 50 100 150 200 250 300 350 400 450 0 20 40 60 80 Temperature(C°) Set point Output 0 50 100 150 200 250 300 350 400 450 0 1 2 3 4 5 Input(v) Input
[10] B. M. Vinagre, I. Petras, I. Podlubny, and Y.Q. Chen. Using fractional-order adjustment rules and fractional-order reference models in model reference adaptive control. Nonlinear Dynamics 2002;29:269–79.
[11] H. S. Ahn, Y. Q. Chen, and I. Podlubny. Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Applied Mathematics and Computation, 2007;187:27–34. [12] T. Nusret, Ö. F. Özgüven, and M. M. Özyetkin. Robust stability analysis of fractional order interval polynomials. ISA Transactions, 2009:48166-172.
[13] Dadras S., Momeni H.R. Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty, Communications in Nonlinear Science and Numerical Simulation, 2012, 17:367-377.
[14] Rhouma, A., Bouani, F., Bouzouita, B., and Ksouri, M. Model Predictive Control of Fractional Order Systems. Journal of Computational and Nonlinear Dynamics. 2014
[15] Tavazoei, M.S. A note on fractional-order derivatives of periodic functions. Automatica 2010, 46 :945–948.
[16] Hajiloo A., Nariman-zadeh N. and Moeini A. Pareto optimal robust design of fractional-order PID controllers for systems with probabilistic uncertainties. Mechatronics, Elsevier, 2012, 22:788–801.
[17] Rodriguez E., Echeverria J.C., Alvarez-Ramirez J. 1/f fractal noise generation from Grunwald–Letnikov formula. Chaos, Solitons and Fractals, Elsevier, 2009, 39:882–888
[18] Miller K.S., Ross B. An introduction to the fractional calculs and fractional differential equation. John Wiley and Son, 1993.
[19] Oustaloup A., Olivier C., Ludovic L. Representation et Identification Par Modele Non Entier . Paris: Lavoisier; 2005.
[20] Ramirez, D., Alamo T. and Camacho, E. Efficient implementation of constrained min-max model predictive control with bounded uncertainties. Proceedings of the 41th IEEE Conference on Decision and Control, Las Vegas, Nevada USA, 2002.
[21] J. L. Battaglia, L. Le Lay, J. C. Batsale, A. Oustaloup and O. Cois, Heat flux estimation through inverted non integer identification models, Int. J. Thermal Science, 2000;39:374-389.
[22] J. L. Battaglia, O. Cois, L. Puigsegur and A. Oustaloup, Solving an inverse heat conduction problem using a non-integer identified model, Int. J. Heat Mass Transfer, 2001;44:2671-2680.
[23] Cois O. Systèmes linéaires non entiers et identification par modèle non entier : application en thermique. PhD thesis, Université Bordeaux1, Talence, 2002.
[24] Malti R., Victor S., Oustaloup A., Garnier H. An optimal instrumental variable method for continuous-time fractional model identification. In 17th IFAC World Congress, 14379–14384. Seoul South Korea, July 2008.
|