AUTHOR(S): Nguyen Tuan Dung, Nguyen Thanh Phuong
|
TITLE |
ABSTRACT Short-term load forecasting (STLF) plays an important role in building business strategies, ensuring reliability and safe operation for any electrical system. There are many different methods, including: regression models, time series, neural networks, expert systems, fuzzy logic, machine learning and statistical algorithms used for short-term forecasts. However, the practical requirement is how to minimize the forecast errors to prevent power shortages or wastage in the electricity market and limit risks. The paper proposes a method of short-term load forecasting by constructing a Standardized Load Profile (SLP) based on the past electrical load data, combining machine learning algorithms Support Regression Vector (SVR) to improve the accuracy of short-term forecasting algorithms |
KEYWORDS Short-term load forecast; regression model, Standardized Load Profile; Support Vector Regression |
|
Cite this paper Nguyen Tuan Dung, Nguyen Thanh Phuong. (2019) Improve the Accuracy of Short-term Forecasting Algorithms by Standardized Load Profile and Support Regression Vector: Case Study Vietnam. International Journal of Control Systems and Robotics, 4, 58-64 |
|