REFERENCES
[1] H. Kim, Corrosion process of silver in environments containing 0.1 ppm H2S and 1.2 ppm NO2, Mater. And Corros., 54, (2003), pp. 243-250.
[2] C. Kleber, R. Wiesinger, J. Schnller, U. Hilfrich, H. Hutter, M. Schreiner, Initial oxidation of silver surfaces by S2- and S4- species, Corros. Sci., 50(4), 2008, pp. 1112-1121.
[3] D. Pope, H.R. Gibbens, R.L. Moss, The tarnishing of silver at naturally occurring H2S and SO2 levels, Corros. Sci., 8(12), 1968, pp. 883-887.
[4] T.E., Graedel, J.P., Franey, G.J., Gualtieri, G.W., Kammlott, D.L., Malm, On the mechanism of silver and copper sulfidation by atmospheric H2S and OCS, Corros. Sci., 25(12), 1985, pp. 1163-1180.
[5] G. Derdall, J.B. Hyne, The production of H2S by hydrolysis of entrained COS in hydrocarbon liquids, Can. J. Chem. Eng., 57(1), 1979, pp. 112-114.
[6] H. Lin, G.S. Frankel, Accelerated Atmospheric Corrosion Testing of Ag, Corros., 69(11), 2013, pp. 1060-1072.
[7] J. Guinement, C. Fiaud, Laboratory Study of the Reaction of Silver and Copper with Some Atmospheric Pollutants, Proceedings of the 13th ICEC Conference, Lausanne, Switzerland, 1985, pp. 383-390.
[8] W.H. Abbott, The Development and Performance Characteristics of Mixed Flowing Gas Test Environments, Proceedings of the 33rd IEEE Holm Conference, 1987, pp. 63-78.
[9] T.E. Graedel, Corrosion Mechanisms for Silver Exposed to the Atmosphere, J. Electrochem. Soc., 139(7), 1992, pp. 1963-1970.
[10] W.H. Abbott, Effects of Industrial Air Pollutants on Electrical Contact Materials, IEEE Trans. on Parts, Hybrids, and Packaging 10(1), 1974, pp. 24-27.
[11] M. Myers, Overview of the use of Silver in Connector Applications. Technical Paper, Interconnection & Process Technology Tyco Electronics, Harrisburg, PA, 2009, pp. 503-1016.
[12] Y. Wan, X. Wang, X. Wang, Y. Li, H. Sun, K. Zhang, Determination and generation of the corrosion compounds on silver exposed to the atmospheres, Int. J. Electrochem. Sci., 10(3), 2015, pp. 2336-2354.
[13] W. H. Abbott, The Influence of Environment on Tarnishing Reactions, 4th International Research Symposium on Electrical Contact Phenomena: 15th-18th July, held at the University College of Swansea, pp. 35-39, 1968
[14] D. Rice, P. Peterson, E. Rigby, P. Phipps, R. Cappell, R. Tremoureaux, 'Atmospheric Corrosion of Copper and Silver, J. Electrochem. Soc., 128(2), 1981, pp. 275-284.
[15] D. Liang, H. C. Allen, G. S. Frankel, Z. Y. Chen, R. G. Kelly, Y. Wu, and B. E. Wyslouzil, Effects of Sodium Chloride Particles, Ozone, UV, and Relative Humidity on Atmospheric Corrosion of Silver, J. Electrochem. Soc., 157(4), 2010, pp. 146-156.
[16] G.M. Ingo, E. Angelini, C. Riccucci, T. de Caro, A. Mezzi, F. Faraldi, D. Caschera, C. Giuliani, G. Di Carlo, Indoor environmental corrosion of Ag-based alloys in the Egyptian Museum (Cairo, Egypt), Appl. Surface Sci., 326(30), 2015, pp. 222-235.
[17] Y. Wan, E. N. Macha, and R. G. Kelly, Modification of ASTM B117 Salt Spray Corrosion Test and Its Correlation to Field Measurements of Silver Corrosion, Corrosion, Journal of science and engineering, 68(3), 2012, pp 1-10.
[18] J. Novakovic, E. Georgiza and P. Vassiliou, Nano – alumina modified acrylic coatings for silver protection, School of Chemical Engineering, NTUA, Athens, 2013, pp. 23-25.
[19] Z. Al-Saad, M. Bani Hani, Corrosion behavior and preservation of Islamic Silver Alloy Coins, Faculty of Archaeology and Anthropology, https://www.google.com.eg/#q=Z.+Al- aad%2C+M.+Bani+Hani%2C.
[20] C.E. Sanders, D. Verreault, G.S. Frankel, H.C. Allen, the Role of Sulfur in the Atmospheric Corrosion of Silver, J. Electrochem. Soc., 162(12), 2015, pp. 630-637.
[21] P. Vassilio, V. Gouda, Ancient silver artefacts: corrosion processes and preservation strategies, Corrosion and Conservation of Cultural Heritage Metallic Artefacts, A volume in European Federation of Corrosion (EFC) Series, Woodhead Publishing Limited and CRC Press, (2013), p. 213.
[22] N.H. Gale. Z.A. Stos-Gale, Ancient Egyptian Silver, J. Egy. Archaeo., 67, (1981), pp. 103-115.
[23] A. Lucas (ed. J. R. Harris), Ancient Egyptian Materials and Industries, 4th edn. London, (1962).
[24] A.N. Abu-Baker, I. D. MacLeod, R. Sloggett, R. Taylor, European Scientific Journal, 9(33), 2013, pp. 1857-7881.
[25] J.P. Franey, G.W. Kammlott, T.E. Graedel, the corrosion of silver by atmospheric sulfurous gases, Corros. Sci., 25,(2), 1985, pp. 133-143.
[26] T. Sasaki, R. Kanagawa, T. Ohtsuka, K. Miura, Corrosion products of tin in humid air containing sulfur dioxide and nitrogen dioxide at room temperature, Corros. Sci., 45(4), 847 (2003).
[27] T.T.M. Tran, C. Fiaud, E.M.M. Sutter, Oxide and sulphide layers on copper exposed to H2S containing moist air, Corros. Sci. 47(7), 2005, pp. 1724-1737.
[28] M. Seo, Y. Ishikawa, M. Kodaira, A. Sugimoto, S. Nakayama, M. Watanabe, S. Furuya, R. Minamitani, Y. Miyata, A. Nishikata, T. Notoya, Cathodic reduction of the duplex oxide films formed on copper in air with high relative humidity at 60 Co, Corros. Sci., 47(8), 2005, pp. 2079-2090.
[29] A. Niklasson, L.G. Johansson, J.E. Svensson, Atmospheric Corrosion of Lead, The Influence of Formic Acid and Acetic Acid Vapors, J. Electrochem. Soc., 154(1), 2007, pp. 618-625.
[30] M. Lenglet, J. Lopitaux, C. Leygraf, I. Odnevall, M. Carballeira, J.C. Noualhaguet, J. Guinement, J. Gautier, J. Boissel, Analysis of Corrosion Products Formed on Copper in Cl2 / H2S / NO2 Exposure, J. Electrochem. Soc., 142(11), 1995, pp. 3690-3696.
[31] T. Astrup, M. Wadsak, C. Leygraf, M. Schreinerb, In Situ Studies of the Initial Atmospheric Corrosion of Copper Influence of Humidity, Sulfur Dioxide, Ozone and Nitrogen Dioxide, J. Electrochem. Soc., 147(7), 2000, pp. 2543-2551.
[32] F. Samie, J. Tidblad, V. Kucera, C. Leygraf, Atmospheric corrosion effects of HNO3 - method development and results on laboratory exposed copper, Atmos. Environ., 39(38), 2005, pp. 7362-7373.
[33] B.I. Rickett, J.H. Payer, Composition of Copper Tarnish Products Formed in Moist Air with Trace Levels of Pollutant Gas: Hydrogen Sulfide and Sulfur Dioxide/Hydrogen Sulfide, J. Electrochem. Soc., 142(11), 1995, pp. 3723-3728.
[34] B.I. Rickett, J.H. Payer, Composition of Copper Tarnish Products Formed in Moist Air with Trace Levels of Pollutant Gas: Sulfur Dioxide and Sulfur Dioxide/Nitrogen Dioxide, J. Electrochem. Soc., 142(11), 1995, pp. 3713-3722.
[35] J. Tétreault, E. Cano, M. Bommel, D. Scott, M. Dennis, M. Barthés-Labrousse, L. Minel, L. Robbio, Corrosion of Copper and Lead by Formaldehyde, Formic and Acetic Acid Vapours, Studies in Conservation, 48(2), 2003, pp. 237-250.
[36] A. López-Delgado, E. Cano, J. Bastidas, F. López, A comparative study on copper corrosion originated by formic and acetic acid vapours, J. mat., sci. 36(21), 2001, pp. 5203-5211.
[37] F. Samie, J. Tidblad, V. Kucera, C. Leygraf, atmospheric corrosion effects of HNO3—Comparison of laboratory-exposed copper, zinc and carbon steel, Atmospheric Environment, 41(23), 2007, pp. 4888-4896.
[38] J.G. Castano, D. de la Fuente, M. Morcillo, A laboratory study of the effect of NO2 on the atmospheric corrosion of zinc, Atmos. Environ., 41(38), 2007, pp. 8681-8696.
[39] S. Oesch, M. Faller, Environmental effects on materials: the effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures, Corros. Sci., 39(9), 1997, pp. 1505-1530.
[40] H. Strandberg, L.G. Johansson, Role of O3 in the atmospheric corrosion of copper in the presence of SO2, J. Electrochem. Soc., 144(7), 1997, pp. 2334-2342.
[41] P. Eriksson, L.G. Johansson, The role of NO2 in the atmospheric corrosion of different metals, Proceeding of 10th Scandinavian Corrosion Congress. 43 (1986) Stockholm.
[42] M.J. Campin, Microstructural investigation of copper corrosion: influence of humidity, PhD, Department Physics, Faculty of Science, New Mexico state university, 2003.
[43] L. Mariaca, D. de la Fuente, S. Feliu, J. Simancas, J.A. Gonzalez, M. Morcillo, Interaction of copper and NO2: Effect of joint presence of SO2, relative humidity and temperature, J. Physics and Chemistry of Solids 69(4), 2008, pp. 895-904.
[44] R. Wiesinger, I. Martina, C. Kleber, M. Schreiner, Influence of relative humidity and ozone on atmospheric silver corrosion, Corros. Sci., 77, 2013, pp. 69-76.
[45] ASTM D5116, Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions from Indoor Materials/Products, 1997.
[46] J.F. Young, Humidity Control in the Laboratory Using Salt Solutions-A Review, J. Appl. Chem., 17(9), 1967, pp. 241-245
[47] M.N. Kim, H.S. Yu, S.E. Lee, A Small Chamber Test and Oddy Test on Medium Density Fiberboard grade (E0, E1), Indoor Air Quality in Museums and Historic Properties, University of East Anglia, Norwich, (2003), p. 28.
[48] S. Kim, J.A. Kim, J.Y. An, H.J. Kim, S.D. Kim, J.C. Park, TVOC and formaldehyde emission behaviors from flooring materials bonded with environmental-friendly MF/PVAc hybrid resins, Indoor Air 17(5), (2007), pp. 404-415.
[49] M.C. Bernard, E. Dauvergne, M. Evesque, M. Keddam, H. Takenouti, Reduction of silver tarnishing and protection against subsequent corrosion, Corros. Sci., 47(3), 2005, pp. 663-679.
[50] H. Lin, G.S. Frankel, W.H. Abbott, Analysis of Ag Corrosion Products, J. Electrochem. Soc. 160(8), 2013, pp. 345-355.
[51]https://en.wikipedia.org/wiki/Hydrogen_sulfide.
[52]https://en.wikipedia.org/wiki/Chlorine#cite_ref-Greenwood789_7-1.
[53] S.A. Vonderbrink, Laboratory Experiments for Advanced Placement Chemistry (second Edition), Flinn Scientific, 2006, p. 87.
[54] S. P. Sharma, Atmospheric Corrosion of Silver, Copper, and Nickel – Environmental Test, J. Electrochem. Soc., 125(12), 1978, pp. 2005-2011.
[55] L. Volpe, P. J. Peterson, The atmospheric sulfidation of silver in a tubular corrosion reactor, Corr. Sci., 29(10), 1989, pp. 1179-1196.
|