oalogo2  

AUTHOR(S):

Yussri Salem

 

TITLE

The influence of gaseous pollutants in silver artifacts tarnishing

pdf PDF

ABSTRACT

The present work aims to study the effect of the common gaseous pollutants on silver artifacts corrosion. The study will be carried out manufactured coupons of silver alloy (91 silver, 9 copper) which have chemical composition similarly to ancient Egyptian silver artifacts. These coupons will be exposed to gaseous pollutants of each individual gas; such as Sulfur dioxide, Nitrogen dioxide, Carbon dioxide, Hydrogen sulfide and Chlorine. The exposure period will be four weeks in a climate chamber with gas concentration 10 PPM. After test Examinations by SEM and PM were used to evaluate the effect of each gas and description the morphology of the corrosion layers. Results revealed that all gases reacted with the surface except carbon dioxide. Formed tarnishing layers varied in coverage and density rate. Corrosion products are analyzed by XRD and results were revealed Ag2S, AgCl, Ag2SO4 and Ag2O as corrosion products.

KEYWORDS

Silver, artifacts, atmospheric corrosion, gaseous pollutants.

REFERENCES

[1] H. Kim, Corrosion process of silver in environments containing 0.1 ppm H2S and 1.2 ppm NO2, Mater. And Corros., 54, (2003), pp. 243-250.

[2] C. Kleber, R. Wiesinger, J. Schnller, U. Hilfrich, H. Hutter, M. Schreiner, Initial oxidation of silver surfaces by S2- and S4- species, Corros. Sci., 50(4), 2008, pp. 1112-1121.

[3] D. Pope, H.R. Gibbens, R.L. Moss, The tarnishing of silver at naturally occurring H2S and SO2 levels, Corros. Sci., 8(12), 1968, pp. 883-887.

[4] T.E., Graedel, J.P., Franey, G.J., Gualtieri, G.W., Kammlott, D.L., Malm, On the mechanism of silver and copper sulfidation by atmospheric H2S and OCS, Corros. Sci., 25(12), 1985, pp. 1163-1180.

[5] G. Derdall, J.B. Hyne, The production of H2S by hydrolysis of entrained COS in hydrocarbon liquids, Can. J. Chem. Eng., 57(1), 1979, pp. 112-114.

[6] H. Lin, G.S. Frankel, Accelerated Atmospheric Corrosion Testing of Ag, Corros., 69(11), 2013, pp. 1060-1072.

[7] J. Guinement, C. Fiaud, Laboratory Study of the Reaction of Silver and Copper with Some Atmospheric Pollutants, Proceedings of the 13th ICEC Conference, Lausanne, Switzerland, 1985, pp. 383-390.

[8] W.H. Abbott, The Development and Performance Characteristics of Mixed Flowing Gas Test Environments, Proceedings of the 33rd IEEE Holm Conference, 1987, pp. 63-78.

[9] T.E. Graedel, Corrosion Mechanisms for Silver Exposed to the Atmosphere, J. Electrochem. Soc., 139(7), 1992, pp. 1963-1970.

[10] W.H. Abbott, Effects of Industrial Air Pollutants on Electrical Contact Materials, IEEE Trans. on Parts, Hybrids, and Packaging 10(1), 1974, pp. 24-27.

[11] M. Myers, Overview of the use of Silver in Connector Applications. Technical Paper, Interconnection & Process Technology Tyco Electronics, Harrisburg, PA, 2009, pp. 503-1016.

[12] Y. Wan, X. Wang, X. Wang, Y. Li, H. Sun, K. Zhang, Determination and generation of the corrosion compounds on silver exposed to the atmospheres, Int. J. Electrochem. Sci., 10(3), 2015, pp. 2336-2354.

[13] W. H. Abbott, The Influence of Environment on Tarnishing Reactions, 4th International Research Symposium on Electrical Contact Phenomena: 15th-18th July, held at the University College of Swansea, pp. 35-39, 1968

[14] D. Rice, P. Peterson, E. Rigby, P. Phipps, R. Cappell, R. Tremoureaux, 'Atmospheric Corrosion of Copper and Silver, J. Electrochem. Soc., 128(2), 1981, pp. 275-284.

[15] D. Liang, H. C. Allen, G. S. Frankel, Z. Y. Chen, R. G. Kelly, Y. Wu, and B. E. Wyslouzil, Effects of Sodium Chloride Particles, Ozone, UV, and Relative Humidity on Atmospheric Corrosion of Silver, J. Electrochem. Soc., 157(4), 2010, pp. 146-156.

[16] G.M. Ingo, E. Angelini, C. Riccucci, T. de Caro, A. Mezzi, F. Faraldi, D. Caschera, C. Giuliani, G. Di Carlo, Indoor environmental corrosion of Ag-based alloys in the Egyptian Museum (Cairo, Egypt), Appl. Surface Sci., 326(30), 2015, pp. 222-235.

[17] Y. Wan, E. N. Macha, and R. G. Kelly, Modification of ASTM B117 Salt Spray Corrosion Test and Its Correlation to Field Measurements of Silver Corrosion, Corrosion, Journal of science and engineering, 68(3), 2012, pp 1-10.

[18] J. Novakovic, E. Georgiza and P. Vassiliou, Nano – alumina modified acrylic coatings for silver protection, School of Chemical Engineering, NTUA, Athens, 2013, pp. 23-25.

[19] Z. Al-Saad, M. Bani Hani, Corrosion behavior and preservation of Islamic Silver Alloy Coins, Faculty of Archaeology and Anthropology, https://www.google.com.eg/#q=Z.+Al- aad%2C+M.+Bani+Hani%2C.

[20] C.E. Sanders, D. Verreault, G.S. Frankel, H.C. Allen, the Role of Sulfur in the Atmospheric Corrosion of Silver, J. Electrochem. Soc., 162(12), 2015, pp. 630-637.

[21] P. Vassilio, V. Gouda, Ancient silver artefacts: corrosion processes and preservation strategies, Corrosion and Conservation of Cultural Heritage Metallic Artefacts, A volume in European Federation of Corrosion (EFC) Series, Woodhead Publishing Limited and CRC Press, (2013), p. 213.

[22] N.H. Gale. Z.A. Stos-Gale, Ancient Egyptian Silver, J. Egy. Archaeo., 67, (1981), pp. 103-115.

[23] A. Lucas (ed. J. R. Harris), Ancient Egyptian Materials and Industries, 4th edn. London, (1962).

[24] A.N. Abu-Baker, I. D. MacLeod, R. Sloggett, R. Taylor, European Scientific Journal, 9(33), 2013, pp. 1857-7881.

[25] J.P. Franey, G.W. Kammlott, T.E. Graedel, the corrosion of silver by atmospheric sulfurous gases, Corros. Sci., 25,(2), 1985, pp. 133-143.

[26] T. Sasaki, R. Kanagawa, T. Ohtsuka, K. Miura, Corrosion products of tin in humid air containing sulfur dioxide and nitrogen dioxide at room temperature, Corros. Sci., 45(4), 847 (2003).

[27] T.T.M. Tran, C. Fiaud, E.M.M. Sutter, Oxide and sulphide layers on copper exposed to H2S containing moist air, Corros. Sci. 47(7), 2005, pp. 1724-1737.

[28] M. Seo, Y. Ishikawa, M. Kodaira, A. Sugimoto, S. Nakayama, M. Watanabe, S. Furuya, R. Minamitani, Y. Miyata, A. Nishikata, T. Notoya, Cathodic reduction of the duplex oxide films formed on copper in air with high relative humidity at 60 Co, Corros. Sci., 47(8), 2005, pp. 2079-2090.

[29] A. Niklasson, L.G. Johansson, J.E. Svensson, Atmospheric Corrosion of Lead, The Influence of Formic Acid and Acetic Acid Vapors, J. Electrochem. Soc., 154(1), 2007, pp. 618-625.

[30] M. Lenglet, J. Lopitaux, C. Leygraf, I. Odnevall, M. Carballeira, J.C. Noualhaguet, J. Guinement, J. Gautier, J. Boissel, Analysis of Corrosion Products Formed on Copper in Cl2 / H2S / NO2 Exposure, J. Electrochem. Soc., 142(11), 1995, pp. 3690-3696.

[31] T. Astrup, M. Wadsak, C. Leygraf, M. Schreinerb, In Situ Studies of the Initial Atmospheric Corrosion of Copper Influence of Humidity, Sulfur Dioxide, Ozone and Nitrogen Dioxide, J. Electrochem. Soc., 147(7), 2000, pp. 2543-2551.

[32] F. Samie, J. Tidblad, V. Kucera, C. Leygraf, Atmospheric corrosion effects of HNO3 - method development and results on laboratory exposed copper, Atmos. Environ., 39(38), 2005, pp. 7362-7373.

[33] B.I. Rickett, J.H. Payer, Composition of Copper Tarnish Products Formed in Moist Air with Trace Levels of Pollutant Gas: Hydrogen Sulfide and Sulfur Dioxide/Hydrogen Sulfide, J. Electrochem. Soc., 142(11), 1995, pp. 3723-3728.

[34] B.I. Rickett, J.H. Payer, Composition of Copper Tarnish Products Formed in Moist Air with Trace Levels of Pollutant Gas: Sulfur Dioxide and Sulfur Dioxide/Nitrogen Dioxide, J. Electrochem. Soc., 142(11), 1995, pp. 3713-3722.

[35] J. Tétreault, E. Cano, M. Bommel, D. Scott, M. Dennis, M. Barthés-Labrousse, L. Minel, L. Robbio, Corrosion of Copper and Lead by Formaldehyde, Formic and Acetic Acid Vapours, Studies in Conservation, 48(2), 2003, pp. 237-250.

[36] A. López-Delgado, E. Cano, J. Bastidas, F. López, A comparative study on copper corrosion originated by formic and acetic acid vapours, J. mat., sci. 36(21), 2001, pp. 5203-5211.

[37] F. Samie, J. Tidblad, V. Kucera, C. Leygraf, atmospheric corrosion effects of HNO3—Comparison of laboratory-exposed copper, zinc and carbon steel, Atmospheric Environment, 41(23), 2007, pp. 4888-4896.

[38] J.G. Castano, D. de la Fuente, M. Morcillo, A laboratory study of the effect of NO2 on the atmospheric corrosion of zinc, Atmos. Environ., 41(38), 2007, pp. 8681-8696.

[39] S. Oesch, M. Faller, Environmental effects on materials: the effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures, Corros. Sci., 39(9), 1997, pp. 1505-1530.

[40] H. Strandberg, L.G. Johansson, Role of O3 in the atmospheric corrosion of copper in the presence of SO2, J. Electrochem. Soc., 144(7), 1997, pp. 2334-2342.

[41] P. Eriksson, L.G. Johansson, The role of NO2 in the atmospheric corrosion of different metals, Proceeding of 10th Scandinavian Corrosion Congress. 43 (1986) Stockholm.

[42] M.J. Campin, Microstructural investigation of copper corrosion: influence of humidity, PhD, Department Physics, Faculty of Science, New Mexico state university, 2003.

[43] L. Mariaca, D. de la Fuente, S. Feliu, J. Simancas, J.A. Gonzalez, M. Morcillo, Interaction of copper and NO2: Effect of joint presence of SO2, relative humidity and temperature, J. Physics and Chemistry of Solids 69(4), 2008, pp. 895-904.

[44] R. Wiesinger, I. Martina, C. Kleber, M. Schreiner, Influence of relative humidity and ozone on atmospheric silver corrosion, Corros. Sci., 77, 2013, pp. 69-76.

[45] ASTM D5116, Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions from Indoor Materials/Products, 1997.

[46] J.F. Young, Humidity Control in the Laboratory Using Salt Solutions-A Review, J. Appl. Chem., 17(9), 1967, pp. 241-245

[47] M.N. Kim, H.S. Yu, S.E. Lee, A Small Chamber Test and Oddy Test on Medium Density Fiberboard grade (E0, E1), Indoor Air Quality in Museums and Historic Properties, University of East Anglia, Norwich, (2003), p. 28.

[48] S. Kim, J.A. Kim, J.Y. An, H.J. Kim, S.D. Kim, J.C. Park, TVOC and formaldehyde emission behaviors from flooring materials bonded with environmental-friendly MF/PVAc hybrid resins, Indoor Air 17(5), (2007), pp. 404-415.

[49] M.C. Bernard, E. Dauvergne, M. Evesque, M. Keddam, H. Takenouti, Reduction of silver tarnishing and protection against subsequent corrosion, Corros. Sci., 47(3), 2005, pp. 663-679.

[50] H. Lin, G.S. Frankel, W.H. Abbott, Analysis of Ag Corrosion Products, J. Electrochem. Soc. 160(8), 2013, pp. 345-355.

[51]https://en.wikipedia.org/wiki/Hydrogen_sulfide.

[52]https://en.wikipedia.org/wiki/Chlorine#cite_ref-Greenwood789_7-1.

[53] S.A. Vonderbrink, Laboratory Experiments for Advanced Placement Chemistry (second Edition), Flinn Scientific, 2006, p. 87.

[54] S. P. Sharma, Atmospheric Corrosion of Silver, Copper, and Nickel – Environmental Test, J. Electrochem. Soc., 125(12), 1978, pp. 2005-2011.

[55] L. Volpe, P. J. Peterson, The atmospheric sulfidation of silver in a tubular corrosion reactor, Corr. Sci., 29(10), 1989, pp. 1179-1196.

Cite this paper

Yussri Salem. (2018) The influence of gaseous pollutants in silver artifacts tarnishing. International Journal of Cultural Heritage, 3, 1-10

 

cc.png
Copyright © 2018 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0