oalogo2  

AUTHOR(S):

Likhtenshtein Gertz I

 

TITLE

Nitric Oxide Analysis in Biology and Biomedicine. Modern Trends and Overlook

pdf PDF

ABSTRACT

Given presentation is a brief review of current state of currently used physico chemical methods of analysis of nitric oxide: optical spectroscopy, fluorescence, chemiluminescence, and electrochemistry. Other less frequently employed approaches include mass spectrometry, X-ray photoelectron spectroscopy, quantum cascade infrared laser spectroscopy, mechanotronics quartz crystal microbalance, and spin trapping also have been mentioned. The attention will be focused on recently proposed methods for real time monitoring nitric oxide dynamics in biological systems based on using supermolecules: fluorophore-nitroxide (FNMA), Fluorescence inductive-resonance method of a (FIRMA), and fluorescence spin exchange (FSEMA) methods of analysis

KEYWORDS

nitric oxide, optics, fluorescence, chemiluminescence electrochemistry, supermolecules, energy transfer, spin exchang

REFERENCES

[1] Louise J. IgnarroLJ. Nitric Oxide Second Edittion. Elsevier Inc... 2010. 

[2] Jose Carlos Toledo, Ohara Augusto. Connecting the Chemical and Biological Properties of of Nitric Oxide. Chem. Res. Toxicol., 2012, 25 (5), pp 975–989 

[3] Griess P. Bemerkungen zu der Abhandlung der HH. Weselky und Benedikt Ueber einige Azoverbindungen. Ber. Deutsch Chem. Ges. (1879) 12, 426-428 

[4] Moshage H, Kok B, Huizenga JR; Jansen PL. Nitrite and nitrate determination in plasma: a critical evaluation. Clin. Chem. (1995) 41, 892-896. 

[5] Yang F, Troncy E, Francoeur M, Vinet B, Vinay P, Czaika G, Blaise G. Effect of reducing agents and temperatures on conversion of nitrite and nitrate to nitric oxide and detection of NO by chemiluminescence. Clin. Chem. (1997) 43, 657-662. 

[6]. Casey TE; Hilderman RH. Modification of the cadmium reduction assay for detection of nitrite production using fluorescence indicator 2,3-diaminonaphthalene. Nitric Oxide (2000) 4, 67-74. • 

[7] Jobgen WS, Jobgen SC, Li H, Meininger CJ, Wu G. Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci (2007) 15, 851, 71-82. • 

[8] Tsikas D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J. Chromatogr. B Analyt Technol Biomed Life Sci.(2007) 851, 51-70. 

[9] Zhang X.; Broderick M. Electrochemical NO sensors and their applications in biomedical research. Biomedical Significance of Nitric Oxide. International Scientific literature, Inc., 2003. 

[10] Zhang Y, Samson FE, Nelson SR, Pazdernik TL. Nitric oxide detection with intracerebral microdialysis: important considerations in the application of the hemoglobin-trapping technique. J. Neurosci. Methods (1996) 68, 165–173. 

[11] Aylott JW, Richardson DJ, Russell DA. Optical biosensing of gaseous nitric oxide using spin-coated sol-gel thin films. Chem. Mater. (1997) 9, 2261–2263. 

[12] Boon EM, Marletta MA. Sensitive and selective detection of nitric oxide using an H-NOX domain. J. Am. Chem. Soc. (2006) 128,10022–10023. 

[13] [Dacres H, Narayanaswamy R. A new optical sensing reaction for nitric oxide. Sens. Actuators B (2003) 90, 222–229. 

[14] Zhang Y, Samson FE, Nelson SR, Pazdernik TL. Nitric oxide detection with intracerebral microdialysis: important considerations in the application of the hemoglobin-trapping technique. J. Neurosci. Methods (1996) 68,165–173. 

[15] Chan J, Chang CJ. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nature Chemistry (2012) 4, 973–984 

[16] Huili Li, Ajun Wan' Fluorescent probes for real-time measurement of nitric oxide in living cells. Analyst (2015) 140, 7129. 

[17] McQuade LE, Lippard SJ, Fluorescent probes to investigate nitric oxide and other reactive nitrogen species in biology (truncated form: fluorescent probes of reactive nitrogen species. Curr. Opin. Chem. Biol. (2010) 14, 43–49. 

[18] Dong CH, Heo S, Chen S, H. M. Kim HM, Liu Z. Quinoline-Based Two-Photon Fluorescent Probe for Nitric Oxide in Live Cells and Tissues. Anal. Chem. (2014) 86, 308–311. • 

[20] Huili Li, Ajun Wan Fluorescent probes for real-time measurement of nitric oxide in living cells. Analyst (2015) 140, 7129-7141. 

[21] Barbosa RM.; Lourenco CF, Santos RM, Pomerleau F, Huettl P, Gerhardt, [G. A.; Laranjinha GA J. In vivo real-time measurement of nitric oxide in anesthetizedrat brain. Methods Enzymol. (2008) 441:351–367. • 

[22]. Woldman YY, Sun J, Zweier JL, Khramtsov VV Direct chemiluminescence detection of nitric oxide) aqueous solutions using the natural nitric oxide target soluble guanylyl cyclase. Free Radical Biology & Medicine (2009) 47, 1339–1345. 

[23] Lozinsky EM, Martina, LV, Shames AI, Uzlaner N, Masarwa A, Likhtenshtein GI, Meyerstein D., Martin, VV, Priel Z. Detection of NO from pig trachea by a fluorescence method, Analytical Biochemistry (2004) 326, 139-145. 

[24] Likhtenshtein GI. Electron Spin in Chemistry and Biology: Fundamentals, Methods, Reactions Mechanisms, Magnetic Phenomena, Structure Investigation. Springer, 2016. 

[25] Likhtenshtein GI. Novel fluorescent methods for biotechnological and biomedical sensoring: assessing antioxidants, reactive radicals, NO dynamics, immunoassay, and biomembranes fluidity. Applied biochemistry and biotechnology (2009) 152, 135-155. 

[26] Chen O, Uzlaner, N, Priel Z, Likhtenshtein GI, Novel fluorescence method for real-time monitoring of nitric oxide dynamics in nanoscale concentration. Journal of Biochemical and Biophysical Methods (2008) 70, 1006-1013. 

[27] Likhtenshtein GI. Stilbenes: Application in Chemistry, Life Science and Material Science. WILEY-VCH, Weinhem, 2009. 

[28] Dedigama A, Angelo M, Torrione P, Tong-Ho Kim, Wolter V, Lampert W, Atewologun A, Edirisoorya M, Collins L, Kuech TF, Losurdo M, Bruno G, April Brown A. Hemin-Functionalized InAs-Based High Sensitivity Room Temperature NO Gas Sensors J. Phys. Chem. C (2012) 116, 826–833. 

[29] Shibuki K. An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neurosci. Res. (1990) 9 - 69–76. 

[30] Hetrick EM, Schoenfisch MH. Analytical Chemistry of Nitric Oxide. Annu. Rev. Anal. Chem. (2009) 2, 409–2433. 

[31] Davies IR, Zhang, XJ. Nitric oxide selective electrodes. Methods Enzymol. (2008) 436, 63–95. 

[32 Peiris W, Pubudu M. New Generation of Electrochemical Sensors for Nitric Oxide; Ruthenium/Carbon-Based Nanostructures and Colloids as Electrocatalytic Platforms" (2009) ETD Archive (2009) 234 

[33] Liu YM, Punckt C, Pope MA, Gelperin A, Aksay IA. Electrochemical Sensing of Nitric Oxide with Functionalized Graphene Electrodes. ACS Appl. Mater. Interfaces 5, 12624–12630. 

[34] Shan Jiang1, Rui Cheng,, Xiang Wang, Teng Xue, Yuan Liu, Andre Nel, Yu Huang2,4 Xiangfeng Duan1,4 Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nature communication (2013| 4, 222. 

[94] Conrath U, Amoroso G, Kohle H, Sultemeyer DF. Non-invasive online detection of nitric oxide from plants and some other organisms by . Plant J. (2004) 38, 1015–1022. 

[35] Dubey M, Bernasek SL, Schwartz J. Highly sensitive nitric oxide detection using X-ray photoelectron spectroscopy. J. Am. Chem. Soc. (2007) 129, 6980–6981. 

[36] McManus JB, Nelson DD, Herndon SC, Shorter JH, Zahniser MS, Blaser S, Hvozdara L, Muller A, Giovannini M, Faist J Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1. Appl. Phys. B (2005) 85, 235–241. 

[37] Di Franco C, Elia A, Spagnolo V , Scamarcio G, Lugarà PM, Ieva E, Cioffi N, Luisa Torsi L, Bruno G, Losurdo M, Garcia MA, Wolter SD, Brown A, Ricco M. Optical and Electronic NOx Sensors for Applications in Mechatronics. Sensors (2009) 9, 3337-3356. 

[38] Zhang J, Hu J, Zhu ZQ, Gong H, O’Shea SJ. Quartz crystal microbalance coated with sol-gelderived indium-tin oxide thin films as gas sensor for NO detection. Colloids Surf. A (2004) 236, 23–30. 

[39] Janzen EG, Blackburn BJ. Detection and identification of short-lived free radicals by electron spin resonance trapping techniques (spin trapping). Photolysis of organolead, -tin, and -mercury compounds .J. Am. Chem. Soc.(1969) 91, 4481–4490/ 

[40] Hirsh DJ, Schieler BM, Fomchenko KM, Jordan ET, Bidle KD. Free Radical Biology & Medicine (2016), 96, 199-210. 

[41] R, Triquigneaux M, Andre-Barres Ch, Charles L, Tuccio B. 5-Hydroxy-2,2,6,6-tetramethyl-4-(2-methylprop-1-en-yl)cyclohex-4-ene-1,3-dione, a novel cheletropic trap for nitric oxide EPR detection. Chemical Communications (Cambridge, United Kingdom) (2010) 46, 3675-3677 

[42] Fӧrster T. Energiewanderung und Fluoreszenz. Naturwissenschaften (1946) 33, 166-175 

[43]. Smith AM, Nie Sh. Chemical analysis and cellular imaging with quantum dots. Analyst (2004) 129 8 672 677] 

[44] Marcus RA. At the Birth of Modern Semiclassical Theory. Mol Phys (2012) 110, 513-516. 

[45] Likhtenshtein, G. I. Role of orbital and dynamic factors in electron transfer in reaction centers of photosynthetic systems. .J. Photochem. Photobiol. A: Chem. (1996) 96, 79-92.

Cite this paper

Likhtenshtein Gertz I. (2018) Nitric Oxide Analysis in Biology and Biomedicine. Modern Trends and Overlook. International Journal of Biochemistry Research, 3, 20-30

 

cc.png
Copyright © 2018 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0