oalogo2  

AUTHOR(S):

Jacinto Garrido Velarde, Julio Hernández Blanco, Julián Mora Aliseda

 

TITLE

Methods of Quantifying the Visual Filtering of Vegetation to Minimize the Impact of Buildings on the Landscape

pdf PDF

ABSTRACT

Vegetation is used by landscape planners and designers to reduce the visual impact of buildings. The choice of the species to be used depends on the characteristics of the crown canopy filtering. Nevertheless, the information on crown canopy filtering is scarce. This work examines the degree of filtering in canopy architecture of Quercus pyrenaica. The district of the Ambroz Valley, in Cáceres Province was chosen as the experimental area for the purposes of this research, and here Quercus pyrenaica were chosen as the most representative species. Two methods were selected for this study: hemispheric photography and vertical photography. All data was gathered during the summer as this is when the canopy of the species analyzed reaches its maximum leaf area index. The main aim of this research is to compare the hemispherical photographic method for calculating the amount of light that passes through the canopy, with that of vertical photography to obtain filtering percentages in plants.

KEYWORDS

Vegetation, filtering, visual impact, landscape integration, photographic treatment, Quercus pyrenaica

REFERENCES

[1] Bellow JG. & Nair PKR. Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agric. For. Meteorol. Nº 114, 2003, pp. 197– 211.

[2] Courbaud B., de Coligny, F. & Cordonnier T. Simulating radiation distribution in a heterogeneous Norway spruce forest on a slope. Agric. Forest Meteorol. Nº 116, 2003, pp. 1–18.

[3] Dignan P. & Bren L. A study of the effect of logging on the understorey light environment in riparian buffer strips in a south-east Australian forest. Forest Ecol. Manage. Nº 172, 2003, pp. 161– 172.

[4] Español I. Impacto ambiental. ETSI Caminos, Canales y Puertos, Universidad Politécnica, Madrid, 1995.

[5] Español I. Las obras públicas en el paisaje. CEDEX. Ministerio de Fomento. Madrid, 1998.

[6] Frazer GW. & Canham CD. GLA: Gap Light Analyzer, Copyright © 1999: Simon Frazer University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York, 1999.

[7] García L. Criterios de diseño de las construcciones rurales para su integración en el paisaje. Doctoral thesis. Universidad Politécnica, Madrid, 1998

[8] García L., Hernández J., Gutiérrez MªP., Aguado P., Juan A. & Morán, J. Integración de edificios agroindustriales en el paisaje: la vegetación como elemento integrador. XIV Congreso de Ingeniería de Proyectos (León), 1999.

[9] García L. Hernández J. & García J. Líneas y formas de las construcciones rurales ante la conservación del paisaje (Lines and forms of rural buildings and the landscape integration) Diseño y ciudad Nº 18, 1999, pp. 95-101.

[10] García L., Hernández J. & Ayuga F. Analysis of the exterior colour of agroindustrial buildings: a computer aided approach to landscape integration, Journal of Environmental Management Nº 69: 2003, pp. 93-104.

[11] Halverson MA., Skelly DK., Kiesecker JM. & Freidenburg LK. Forest mediated light regime linked to amphibian distribution and performance. Oecologia Nº 134, 2003, pp. 360–364.

[12] Hernández J., García L., Morán J., Juan A. & Ayuga F. Estimating visual perception of rural landscapes using GIS: the influence of vegetation. Agriculture and Environment. Vol. Nº 1, 2003, pp. 139-141.

[13] Hernández J., García L. & Ayuga F. Integration Methodologies for Visual Impact Assessment of Rural Buildings by Geographic Information Systems. Biosys. Eng. Nº 88, 2004, pp. 255-263.

[14] (a) Hernández J., García L. & Ayuga F. Assessment of the visual impact made on the landscape by new buildings: a methodology for site selection, Landscape Urban Plann. Nº 68, 2004, pp. 15-28.

[15] Herrera CM. Historical effects and sorting processes as explanations for contemporary ecological patterns-character syndromes in Mediterranean woody-plants. American Naturalist Nº 140, 1992, pp. 421-446.

[16] Humphreys GW., Cinel K., Wolfe J., Olson A. & Klempen N. Fractionating the binding process: neuropsychological evidence distinguishing binding of form from binding of surface features. Vision Res Nº 40, 2000, pp. 1569-1596.

[17] ICONA. Segundo Invenatario Forestal Nacional 1986–1995: Comunidad de Madrid. Ministerio de Medio Ambiente, Madrid, 1994.

[18] Langer S. The dynamic image. Architectural Press, London, 1953.

[19] Luttik J. The value of trees, water and open space as reflected by house prices in the Netherlands. Landscape Urban Plann. Nº 48, 2000, pp. 161-167.

[20] Jaeger M. & Reffye Ph. 1992. Basic concepts of computer simulation of plant growth. J. Biosci. Nº 17, 1992, pp. 275-191.

[21] Jakle JA. The Visual Elements of Landscape. The University of Massachusetts Press, Amherst, 1987.

[22] Jonckheere I., Fleck S., Nackaerts K., Muysa B., Coppin P., Weissy M. & Baret F. Review of methods for in situ leaf area index determination; Part I - theories, sensors and hemispherical photography. Agr Forest Meteorol Nº 121, 2004, pp. 19-35.

[23] Karjalainen E. & Komulainen M. The visual effect of felling on small and medium scale landscapes in north-eastern Finland. Aust. J. Environ. Manage. Nº 55, 1999, pp. 167-181.

[24] Lange E. Vista management in Acadia National Park. Landscape Urban Plann. Nº 19, 1990, pp. 353-376.

[25] Lewis P. Three-dimensional plant modelling for remote sensing simulation studies using the Botanical Plant Modelling System. Agronomie: Agric. Environ. Nº 19, 1999, pp. 185-210.

[26] Luttik J. The value of trees, water and open space as reflected by house prices in the Netherlands. Landscape Urban Plann. Nº 48, 2000, pp. 161-167.

[27] Misgav A. Visual preference of the public for vegetation groups in Israel. Landscape Urban Plann. Nº 48, 2000, pp. 143-159.

[28] Montero MJ., Moreno G. & Bertomeu M. Light distribution in scattered-trees open woodlands in Western Spain. Agroforest Syst Nº 73, 2008, pp. 233-244.

[29] Muhar A. Three-dimensional modelling and visualisation of vegetation for landscape simulation. Landscape Urban Plann. Nº 54, 2001, pp. 5-17.

[30] Neufert E. Arte de proyectar en arquitectura. Ed Gustavo Gili, Barcelona, 1982.

[31] Nobis M. & Hunziker U. Automatic thresholding for hemispherical Canopy-photographs based on edge detection. Agr Forest Meteorol Nº 128, 2005, pp. 243-250.

[32] Oppenheimer PE. Real time design and animation of fractal plants and trees. Comput. Graph. Nº 22, 1986, pp. 141-150.

[33] Oberbauer SF., Clark DB., Clark DA., Rich PM. & Vega YG. Light environment, gas exchange, and annual growth ofsaplings of three species of rain forest trees in Costa Rica. J. Trop. Ecol. Nº 9, 1993, pp. 511-523.

[34] Orland B. SmartForest: 3D interactive forest visualisation and analysis. 1994 In: Proceedings of the Decision Support-2001. American Society for Photogrammetry and Remote Sensing, Bethesda, MD. pp. 181-190.

[35] Purcell AT. Lamb R.J. Preference and naturalness: An ecological approach. Landscape Urban Plann. Nº 42, 1998, pp. 57-66.

[36] Rasband W. Image J, Copyright © 2011. National Institutes of Health of the United States.Retrieved February 1st 2010 from http://rsb.info.nih.gov/ij/, 2011.

[37] Rich PM. Characterizing plant canopies with hemispherical photographs. Remote sensing reviews Nº 5, 1990, pp. 13-29.

[38] Roxburgh JR. & Kelly D. Uses and limitations of hemispherical photography for estimating forest light environments. New Zeal. J. Ecol. Nº 19, 1995, pp. 213-217.

[39] Ryan RL. Local perceptions and values for a midwestern river corridor. Landscape Urban Plann. Nº 42, 1998, pp. 225-237.

[40] Serpa A. & Muhar A. Effects of plant size, texture and colour on spatial perception in public green areas – a cross- cultural study. Landscape Urban Plann. Nº 36, 1996, 19-25.

[41] Smardon RC. Appraising the reliability of Visual Impact Assessment methods. National Conference on Applied Technique for Analysis and Management of the Visual Resource. Proocedings. Incline Village, Nevada, April 23-25, 1979. pp. 286-294.

[42] Smardon, RC. Foundations for visual project analysis. Wiley-Interscience. Nueva York. 1986.

[43] Smardon RC. Perception and Aesthetics of the Urban Environment: Review of the Role of Vegetation. Landscape Urban Plann. Nº 15, 1988, pp. 85-106.

[44] Steinintz C. Toward a sustainable landscape with high visual preference and high ecological integrity: the loop road in Acadia National park, USA. Landscape Urban Plann. Nº 19, 1990, pp. 213-250.

[45] Valladares F. La disponibilidad de luz bajo el dosel de los bosques y matorrales ibéricos estimada mediante fotografía hemisférica. Ecología, Nº 20, 2006, pp. 11-30.

Cite this paper

Jacinto Garrido Velarde, Julio Hernández Blanco, Julián Mora Aliseda. (2018) Methods of Quantifying the Visual Filtering of Vegetation to Minimize the Impact of Buildings on the Landscape. International Journal of Agricultural Science, 3, 1-10

 

cc.png
Copyright © 2018 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0