| 
 REFERENCES 
[1] S. Amat, Nonseparable multiresolution with error control, Appl. Math. Comput. 145(1), 2003, pp. 117–132.
  [2] S. Amat, F. Ar'andiga, A. Cohen and R. Donat, Tensor product multiresolution analysis with error control for compact image representation, Signal Process. 82(4), 2002, pp. 587–608. 
  [3] S. Amat, F. Ar'andiga, A. Cohen, R. Donat, G. Garcia and M. von Oehsen, Data compression with ENO schemes: a case study, Appl. Comput. Harmon. Anal. 11(2), 2001, pp. 273–288. 
  [4] S. Amat, S. Busquier and J.C. Trillo, Stable biorthogonal multiresolution transforms,Numer. Anal. Indust. Appl. Math. 1(3), 2006, pp. 229– 239. 
  [5] S. Amat, K. Dadourian, J. Liandrat and J. C. Trillo, High order nonlinear interpolatory reconstruction operators and associated multiresolution schemes, J. Comput. Appl. Math., 253, 2013, pp. 163–180. 
  [6] S. Amat, R. Donat, J. Liandrat and J.C. Trillo, Analysis of a new nonlinear subdivision scheme. Applications in image processing, Found. Comput. Math. 6(2) , 2006, pp. 193-225. 
  [7] S. Amat, R. Donat and J.C. Trillo, On specific stability bounds for linear multiresolution schemes based on piecewise polynomial Lagrange interpolation, J. Math. Anal. Appl. 358(1), 2009, pp. 18–27. 
  [8] S. Amat and J. Liandrat, On the stability of PPH nonlinear multiresolution, Appl. Comp. Harm. Anal. 18(2), 2005, pp. 198–206. 
[9] F. Ar'andiga and R. Donat, Nonlinear multiscale decomposition: the approach of A.Harten, Numer. Algorithms 23, 2000, pp. 175–216. 
  [10] F. Ar'andiga and R. Donat, Stability through synchronization in nonlinear multiscale transformations, SIAM J. Sci. Comput. 29(1), 2007, pp. 265–289. 
  [11] R.L. Claypoole, G. M. Davis,W. Sweldens and R.G. Baraniuk, Nonlinear wavelet transforms for image coding via lifting, IEEE Trans. Image Process 12(12), 2003, pp. 1449–1459. 
  [12] A. Cohen, N. Dyn and B. Matei, Quasilinear subdivision schemes with applications to ENO interpolation, Appl. Comp. Harm. Anal. 15, 2003, pp. 89–116. 
  [13] A. Harten, Discrete multiresolution analysis and generalized wavelets, J. Appl. Numer. Math. 12, 1993, pp. 153–192. 
  [14] A. Harten, Multiresolution representation of data II, SIAM J. Numer. Anal. 33(3), 1996, pp. 1205–1256. Juan Garcia et al. International Journal of Mathematical and Computational Methods http://www.iaras.org/iaras/journals/ijmcm ISSN: 2367-895X 80 Volume 2, 2017 
  [15] Hung-Hseng Hsu, Yi-Qiang Hu and Bing-Fei Wu, An integrated method in wavelet-based image compression, J. Franklin Inst. 335(6), 1998, pp. 1053-1068. 
  [16] J. Ruiz and J.C. Trillo, N-dimensional error control multiresolution algorithms for the cell average discretization, Math. Comput. Simulation, 2017, DOI information: 10.1016/j.matcom.2017.07.009. 
  [17] B. Matei and S. Meignen, Analysis of a class of nonlinear and non-separable multiscale representations, Numer. Algorithms 60(3), 2012, pp. 391-418. 
  [18] B. Matei and S. Meignen, Nonlinear and nonseparable bidimensional multiscale representation based on cell-average representation, IEEE Trans. Image Process 24(11), 2015, pp. 4570- 4580.
  [19] W. Sweldens, The lifting scheme: a custumdesign construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal. 3(2), 1996, pp. 186–200. 
  [20] W. Sweldens, The lifting scheme: a construction of second generation wavelets, SIAM J. Math. Anal. 29(2), 1998, pp. 511–546. 
  [21] W. Sweldens and P. Schr¨oder, Building your own wavelets at home, Wavelets in Computers Graphics, ACM SIGGRAPH Course notes, 1996, pp. 15–87. 
  [22] B. Zhang, J.M. Fadili and J.L. Starck, Wavelets, ridgelets, and curvelets for Poisson noise removal, IEEE Trans. Image Process. 17(7), 2008, pp. 1093–1108. 
 |