REFERENCES
[1] M. Aouchiche. Comparaison automatis´ee d’invariants en th´eorie des graphes. PhD Thesis, ´E cole Polytechnique de Montr´eal, February 2006.
[2] M. Aouchiche, J.-M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J. Lacher´e and A. Monhait. Variable neighborhood search for extremal graphs. 14. The AutoGraphiX 2 system. In L. Liberti and N. Maculan (editors), Global Optimization: From Theory to Implementation, Springer (2006) 281–310.
[3] M. Aouchiche, G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs 20. Automated comparison of graph invariants. Match Commun. Math. Comput. Chem. 58 (2007) 365–384.
[4] Aouchiche M, Caporossi G, Hansen P, Lucas C (2013) Variable Neighborhood Search for Extremal Graphs. 28: AutoGraphiX After Fifteen Years Les Cahiers du GERAD, G-2013-12.
[5] E. K. Burke and G. Kendall, Search methodologies. Introductory tutorials in optimization and decision support techniques. Springer, Berlin, 2005.
[6] E. Camby, J. Cardinal, S. Fiorini, O. Schaudt, The price of connectivity for vertex cover, Discrete mathematics and theoretical computer science 16 (1), 207–224 (2014).
[7] G. Caporossi and P. Hansen, A learning optimization algorithm in Graph Theory. Versatile Search for extremal graphs using a learning algorithm. Lecture Notes in Computer Science 7219 (2012) 16–30.
[8] G. Caporossi and P. Hansen. Variable neighborhood search for extremal graphs: V. Three ways to automate finding conjectures. Disc.Math, 276 (2004) 81–94.
[9] G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs: I. The Auto- GraphiX system. Disc. Math. 212 (2000) 29–44.
[10] G. Caporossi and P. Hansen, Finding relations in polynomial time. In Proceedings of the XVIth International Joint Conference on Artificial Intelligence (Stockholm, 1999), vol. 2, 580–585.
[11] J. Christophe, S. Dewez, J.-P. Doignon, G. Fasbender, P. Gr´egoire, D. Huygens, M. Labb´e, S. Elloumi, H. M´elot and H. Yaman, Linear inequalities among graph invariants: using GraPHedron to uncover optimal relationships. Networks 52 (2008) 287–298.
[12] F. Glover and G. Kochenberger, (Eds.), Handbook of metaheuristics. Kluwer, Amsterdam, 2003.
[13] I. Gutman and N. Trinajsti´c, Graph theory and molecular orbitals. Total -electron energy of alternant hydrocarbons, Chemical Physics Letters 17 (4) 535–538 (1972).
[14] I. Gutman, O. Miljkovi´c, G. Caporossi and P. Hansen, Alkanes with small and large Randi´c connectivity indices, Chemical Physics Letters 306 (5) 366–372 (1999).
[15] P. Hansen, A. Hertz, C. Sellal, D. Vukiˇcevi´c, M. Aouchiche, G. Caporossi, Edge Realizability of Connected Simple Graphs. MATCH Commun. Math. Comput. Chem. 78 (2017) 689–712.
[16] P. Hansen and N. Mladenovi´c, Variable neighborhood search. In [12], 145–184.
[17] P. Hansen and N. Mladenovi´c, Variable neighborhood search: principles and applications. European Journal of Operational Research, 130 (2001) 449–467.
[18] P. Hansen and N. Mladenovi´c, Developments of variable neighborhood search. In C. Ribeiro and P. Hansen (Eds.), Essays, surveys in metaheuristics. Kluwer, Amsterdam, 2001, 415–440.
[19] P. Hansen and N.Mladenovi´c, An introduction to variable neighborhood search. In S. Voss et al. (Eds.), Metaheuristics, advances, trends in local search paradigms for optimization. Kluwer, Amsterdam, 1999, 433–458.
[20] P. Hansen, N. Mladenovi´c and J. A. Moreno P´erez, Variable neighborhood search: methods and applications. Ann. Oper. Res. 175 (2010) 367–407.
[21] S. C. D. Kirkpatrick, Jr. Gellatt and P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671–680.
[22] X. Li and I. Gutman, Mathematical aspects of Randi´c-type molecular structure descriptors, Mathematical Chemistry Monographs, University of Kragujevac, 2006.
[23] N. Mladenovi´c and P. Hansen, Variable neighborhood search. Computers and Operations Research, 24 (1997) 1097–1100.
[24] M. Randi´c, Characterization of molecular branching, Journal of the American Chemical Society 97 6609–6615 (1975).
[25] C. R. Reeves, (Ed.), Modern heuristic techniques for combinatorial problems. Blackwell Scientific, Oxford, 1993.
[26] N. Sloane, The on-line encyclopedia of integer sequences. Available at http://www.research.att.com/minjas/sequences/.
[27] D. Vukiˇcevi´c and M. Gaˇsperov, Bond additive modeling 1. Adriatic indices, Croatica Chemica Acta 83 243–260 (2010).
|