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Abstract: - The aim of this paper is to introduce new results on the magneto-thermomechanical 
interaction between heated viscous incompressible ferrofluid and a cold wall in the presence of a 
spatially varying magnetic field. Similarity transformation is applied to convert the governing 
nonlinear boundary layer equations into coupled nonlinear ordinary differential equations. This system 
is numerically solved using higher derivative method. The effects of governing parameters 
corresponding to various physical conditions are investigated. Numerical results are represented for 
the distributions of velocity and temperature, for the dimensionless wall skin friction and for heat 
transfer coefficients. Our results show excellent agreement with previous studies and obtained two 
solutions in some cases. 
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1 Introduction 

 
During the last several decades, liquids are 

intensive investigated by various researchers due to 
them number of application in industry. One of 
them is the nanofluid, which is a homogenous 
combination of base fluid and nanoparticles. These 
suspensions are made of various metals or non-
metals e.g., aluminium (Al), copper (Cu), Silver 
(Ag), and graphite or carbon nanotubes respectively, 
and the base fluid, which includes water, oil or 
ethylene glycol. Ferrofluid is a special type of 
nanofluids, where nanoparticles can be 
magnetized in the suspension.  

Nanofluids can be used in many areas in our 
daily lives and technological processes. Such type 
of applications includes heat exchanger, vehicle 
cooling, nuclear reactor, cooling of electronic 
devices. The magneto nanofluids are also very much 
helpful in magnetic drug targeting in cancer 
diseases, hyperthermia, wound treatments, removal 
of blockage in the arteries, magnetic resonance 
imaging (MRI) etc. (see [8]). 

When magnetizable materials are subjected to an 
external magnetizing field H, the magnetic dipoles 
or line currents in the material will align and create 
a magnetization M. 

Problem of magnetohydrodynamic (MHD) flow 
near infinite plate has been studied intensively by a 
number of investigators (see, e.g., [1], [2], [4], [5], 

[6], [9], [10], [15]). The hydrodynamic flow of 
MHD fluids was studied when the applied 
transverse magnetic field is assumed to be uniform. 

Neuringer [14] has investigated numerically the 
dynamic response of ferrofluids to the application of 
non-uniform magnetic fields with studying the effect 
of magnetic field on two cases, the two-dimensional 
stagnation point flow of a heated ferrofluid against a 
cold wall and the two-dimensional parallel flow of a 
heated ferrofluid along a wall with linearly 
decreasing surface temperature. 

The aim of this paper is investigating the static 
behaviour of ferrofluids in magnetic fields with 
similarity analysis. This technique is applied on the 
governing equations to transform partial differential 
equations to nonlinear ordinary differential 
equations. A numerical solution is obtained. Wall 
shear stress, heat transfer, velocity and temperature 
boundary layer profiles are obtained and compared 
with the results obtained in [14]. The behaviour of 
the velocity and thermal distribution is studied. In 
some cases, the existence of two different solutions 
will be presented. It will be graphically illustrated 
the effects of the parameters involved in the 
boundary value problem. 

 
 

2 Problem Formulation 
 

Consider a steady two-dimensional flow of an 
incompressible, viscous and electrically 
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nonconducting ferromagnetic fluid over a flat 
surface in the horizontal direction seen in Fig. 1.  
The two magnetic dipoles are equidistant a from the 
leading edge. The filed is due to two-line currents 
perpendicular to and directed out of the flow plane. 

 

 
Fig. 1. Parallel flow along a flat surface in magnetic 

field 
 

The existence of spatially varying fields is 
required in ferrohydrodynamic interactions [13]. 
The following assumptions are needed: 
(i) the direction of magnetization of a fluid element 
is always in the direction of the local magnetic field, 
(ii) the fluid is electrically non-conducting and 
(iii) the displacement current is negligible. 
      Introducing the magnetic scalar potential 𝜙𝜙 
whose negative gradient equals the applied magnetic 
field, i.e. 𝐇𝐇 = −∇ϕ, the scalar potential can be 
given by  

𝜙𝜙(𝑥𝑥,𝑦𝑦) = −
𝐼𝐼0
2𝜋𝜋

�𝑡𝑡𝑡𝑡𝑡𝑡−1 𝑦𝑦 + 𝑡𝑡
𝑥𝑥

+ 𝑡𝑡𝑡𝑡𝑡𝑡−1 𝑦𝑦 − 𝑡𝑡
𝑥𝑥

�, 
 
where 𝐼𝐼0 denotes the dipole moment per unit length 
and 𝑡𝑡 is the distance of the line current from the 
leading edge. 

In the boundary layer for regions close to the 
wall when distances from the leading edge large 
compared to the distances of the line sources from 
the plate, i.e. 𝑥𝑥 ≫  𝑡𝑡, then one gets 

 
[𝛻𝛻𝛻𝛻]𝑥𝑥 = − 𝐼𝐼0

𝜋𝜋
1
𝑥𝑥2,                         (1) 

 
where H is the magnetic field. 

The boundary layer equations for a two-
dimensional and incompressible flow are based on 
expressing the conservation of mass, continuity, 
momentum and energy. 

The analysis is based on the following four 
assumptions [14]: 

(i) the applied field is of sufficient strength to 
saturate the ferrofluid everywhere inside the 
boundary layer, 

(ii) within the temperature extremes experienced 
by the fluid, the variation of magnetization with 
temperature can be approximated by a linear 
equation of state, the dependence of 𝑀𝑀 on the 
temperature 𝑇𝑇 is described by 𝑀𝑀 = 𝐾𝐾�𝑇𝑇𝐶𝐶-𝑇𝑇�, where 
𝐾𝐾 is the pyromagnetic coefficient and 𝑇𝑇𝑐𝑐  denotes the 
Curie temperature as proposed in [3], [14], 

(iii) the induced field resulting from the induced 
magnetization compared to the applied field is 
neglected; hence, the uncoupling of the 
ferrohydrodynamic equations from the 
electromagnetic equations and 

(iv) in the temperature range to be considered, 
the thermal heat capacity 𝑐𝑐, the thermal conductivity 
𝑘𝑘, and the coefficient of viscosity 𝜈𝜈 are independent 
of temperature. 

The governing equations are described as follows 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 0 ,                        (2) 
 

𝜕𝜕 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= − 𝐼𝐼0𝜇𝜇0𝑘𝑘
𝜋𝜋𝜌𝜌

(𝑇𝑇𝐶𝐶 − 𝑇𝑇) 1
𝑥𝑥2 + 𝜈𝜈 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑦𝑦2 ,     (3) 

 
𝑐𝑐 �𝜕𝜕 𝜕𝜕𝑇𝑇

𝜕𝜕𝑥𝑥
+ 𝜕𝜕 𝜕𝜕𝑇𝑇

𝜕𝜕𝑦𝑦
� = 𝑘𝑘 𝜕𝜕2𝑇𝑇

𝜕𝜕𝑦𝑦2,                (4) 
 

where u and v are the parallel and normal velocity 
components to the plate, the 𝑥𝑥 and 𝑦𝑦 axes are taken 
parallel and perpendicular to the plate, respectively, 
𝜈𝜈 is the kinematic viscosity and ρ denotes the 
density of the ambient fluid, which will be assumed 
constant. The system (2)-(4) of nonlinear partial 
differential equations is considered under the 
boundary conditions at the surface (𝑦𝑦 = 0) 
 

𝜕𝜕(𝑥𝑥, 0) = 0,   𝜕𝜕(𝑥𝑥, 0) = 0, 𝑇𝑇(𝑥𝑥, 0) = 𝑇𝑇𝑤𝑤      (5) 
 

with 𝑇𝑇𝑤𝑤 = 𝑇𝑇𝐶𝐶 − 𝐴𝐴𝑥𝑥𝑚𝑚+1 and 
 

𝜕𝜕(𝑥𝑥,𝑦𝑦) → 𝜕𝜕∞ ,  𝑇𝑇(𝑥𝑥,𝑦𝑦) → 𝑇𝑇∞           (6) 
 

as y leaves the boundary layer (𝑦𝑦 → ∞) with 
𝑇𝑇∞ = 𝑇𝑇𝑐𝑐 , and 𝜕𝜕∞  is the exterior streaming speed 
which is assumed throughout the paper to be 
𝜕𝜕∞ = 𝑈𝑈∞𝑥𝑥𝑚𝑚  (𝑈𝑈∞  = const.). Parameter 𝑚𝑚 is relating 
to the power law exponent. The parameter 𝑚𝑚 =  0 
refers to a linear temperature profile and constant 
exterior streaming speed. In case of 𝑚𝑚 =  1, the 
temperature profile is quadratic, and the streaming 
speed is linear. The value of 𝑚𝑚 =  −1 corresponds 
to no temperature variation on the surface. 
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Introducing the stream function 𝜓𝜓, defined by 
𝜕𝜕 = 𝜕𝜕𝜓𝜓 ∕ 𝜕𝜕𝑦𝑦 and 𝜕𝜕 = −𝜕𝜕𝜓𝜓 ∕ 𝜕𝜕𝑦𝑦, so equation (2) is 
automatically satisfied, and equations (3) – (4) can 
be formulated as 

 
𝜕𝜕𝜓𝜓
𝜕𝜕𝑦𝑦

𝜕𝜕2𝛹𝛹
𝜕𝜕𝑦𝑦𝑥𝑥

− 𝜕𝜕𝛹𝛹
𝜕𝜕𝑥𝑥

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑦𝑦2 = 𝜈𝜈 𝜕𝜕

3𝛹𝛹
𝜕𝜕𝑦𝑦3 −

𝐼𝐼0𝜇𝜇0𝐾𝐾
𝜋𝜋𝜌𝜌

(𝑇𝑇𝑐𝑐 − 𝑇𝑇),      (7) 

𝑐𝑐 �𝜕𝜕𝜓𝜓
𝜕𝜕𝑦𝑦

𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥
− 𝜕𝜕𝜓𝜓

𝜕𝜕𝑥𝑥
𝜕𝜕𝑇𝑇
𝜕𝜕𝑦𝑦
� = 𝑘𝑘 𝜕𝜕2𝑇𝑇

𝜕𝜕𝑦𝑦2 .              (8) 
 

Boundary conditions (5) and (6) are transformed 
to  

𝜓𝜓𝑦𝑦′ (𝑥𝑥, 0) = 0,   𝜓𝜓𝑥𝑥′ (𝑥𝑥, 0) = 0,    𝑇𝑇(𝑥𝑥, 0) = 𝑇𝑇𝐶𝐶 −
𝐴𝐴𝑥𝑥𝑚𝑚+1, (9) 

 
𝜓𝜓𝑦𝑦′ (𝑥𝑥,𝑦𝑦) → 𝑈𝑈∞𝑥𝑥𝑚𝑚 ,   𝑇𝑇(𝑥𝑥, 𝑦𝑦) = 𝑇𝑇𝑐𝑐  as 𝑦𝑦 → ∞.     (10) 

 
Now, we have two single unknown functions and 

two partial differential equations. The system of 
(8)–(10) allows us to look for similarity solutions of 
a class of solutions 𝜓𝜓 and 𝑇𝑇 in the form (see [7]) 

 

�
𝜓𝜓(𝑥𝑥,𝑦𝑦) = 𝐶𝐶1𝑥𝑥𝑏𝑏𝑓𝑓(𝜂𝜂)
𝑇𝑇 = 𝑇𝑇𝐶𝐶 + 𝐴𝐴𝑥𝑥𝑚𝑚+1𝛩𝛩(𝜂𝜂)

𝜂𝜂 = 𝐶𝐶2𝑥𝑥𝑑𝑑𝑦𝑦 
�                     (11) 

 
where 𝑏𝑏 and 𝑑𝑑 satisfy the scaling relation 𝑏𝑏 + 𝑑𝑑 =
𝑚𝑚 and for coefficients 𝐶𝐶1 and 𝐶𝐶2 the relation 
𝐶𝐶1 ∕ 𝐶𝐶2 = 𝜈𝜈 must be fulfilled. The real numbers 𝑏𝑏, 𝑑𝑑 
are such that 𝑏𝑏 − 𝑑𝑑 = 1 and 𝐶𝐶1𝐶𝐶2 = 𝑈𝑈∞ , i.e. 
 

𝑏𝑏 =
𝑚𝑚 + 1

2
,    𝑑𝑑 =

𝑚𝑚 − 1
2

 
 

𝐶𝐶1 = �𝜈𝜈𝑈𝑈∞ ,𝐶𝐶2 = �𝑈𝑈∞
𝜈𝜈

 . 

 
By considering (11), equations (7) and (8) and 
conditions (9) and (10) lead to the following system 
of coupled ordinary differential equations  
 

𝑓𝑓′′′ − 𝑚𝑚𝑓𝑓′2 + 𝑚𝑚+1
2
𝑓𝑓𝑓𝑓′ − 𝛽𝛽𝛩𝛩 = 0,          (12) 

𝛩𝛩′′ + (𝑚𝑚 + 1)𝑃𝑃𝑃𝑃 �1
2
𝑓𝑓𝛩𝛩′ − 𝛩𝛩𝑓𝑓′� = 0       (13)  

 
subjected to the boundary conditions  
 

𝑓𝑓(0) = 0,𝑓𝑓′(0) = 0,𝛩𝛩(0) = 1            (14)  
 

𝑓𝑓′(𝜂𝜂) = 1,𝛩𝛩(𝜂𝜂) = 0 𝑡𝑡𝑎𝑎 𝜂𝜂 → ∞           (15)  
 
where 𝑃𝑃𝑃𝑃 = 𝑐𝑐𝜈𝜈 ∕ 𝑘𝑘 is the Prandtl number 𝛽𝛽 =
𝐼𝐼0𝜇𝜇0𝐾𝐾𝐴𝐴 ∕ 𝜋𝜋𝜌𝜌𝑈𝑈∞2 . 

The components of the non-dimensional velocity 
�⃗�𝜕 = (𝜕𝜕, 𝜕𝜕, 0) can be expressed by  
 

𝜕𝜕 = 𝑈𝑈∞𝑥𝑥𝑚𝑚𝑓𝑓′(𝜂𝜂), 
 

𝜕𝜕 = −�𝜈𝜈𝑈𝑈∞  𝑥𝑥
𝑚𝑚−1

2 �
𝑚𝑚 + 1

2
𝑓𝑓(𝜂𝜂) +

𝑚𝑚 − 1
2

𝑓𝑓′(𝜂𝜂)𝜂𝜂�. 
 

The shear stress and the heat transfer at the wall 
are derived by the drag coefficient 𝑓𝑓′′ (0) and the 
𝛩𝛩′(0). 

According to our knowledge, the coupled 
boundary-layer equations for the case when 𝑚𝑚 = 0 
were first examined by Neuringer [14]. If 𝑚𝑚 = 0 
and 𝛽𝛽 = 0, equation (12) is equivalent to the well-
known Blasius equation  

 
𝑓𝑓′′′ + 1

2
𝑓𝑓𝑓𝑓′ = 0                (16) 

 
which appears when analysing a laminar boundary-
layer problem for Newtonian fluids [2], [10].  

In the mathematical investigation of a model 
describing the dynamics of heat transfer in an 
incompressible magnetic fluid under the action of an 
applied magnetic field, the fluid is supposed 
nonelectrically conducting and the calculated 
solutions are valid only for distances greater than a. 
 
 
3 Numerical Solution 

 
There are several proceedings for the numerical 

solution of boundary value problems of coupled 
strongly nonlinear differential equations as (12)-
(13).  

One of them is the higher derivative method 
(HDM), which is implemented in Maple by Chen et 
al. [11]. This code plays a very important role in the 
numerical analysis of boundary value problems, 
because it can be achievable an increase in accuracy 
while ensuring stability by using higher derivatives 
[12]. 

A discretization scheme using higher derivative 
method (HDM) suggested by Chen et al. [11] is 
applied for the solution of the boundary value 
problem (12)–(15). The setting of digits in our case 
is digits:=15. The boundary value problem is 
considered as a first order system, where 𝑦𝑦1(𝑥𝑥) =
𝑓𝑓(𝜂𝜂), 𝑦𝑦2(𝑥𝑥) = 𝑓𝑓′(𝜂𝜂), 𝑦𝑦3(𝑥𝑥) = 𝑓𝑓′′(𝜂𝜂)  and 𝑦𝑦4(𝑥𝑥) =
𝛩𝛩(𝜂𝜂),𝑦𝑦5(𝑥𝑥) = 𝛩𝛩′(𝜂𝜂). The left and right boundary 
conditions are defined by bc1 and bc2. It is 
necessary to give the range (bc1 to bc2) of the 
boundary value problem (Range:= [0.0, 𝜂𝜂𝑚𝑚𝑡𝑡𝑥𝑥 ]). We 
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have three parameters, 𝑚𝑚, 𝛽𝛽 and 𝑃𝑃𝑃𝑃 (e.g., pars:= 
m=0.0, 𝛽𝛽 =0.0, Pr=10.0). 

The next step is to define the initial derivative in 
nder and the number of the nodes in nele (nder:= 3; 
nele := 5;). Next settings of the absolute and relative 
tolerance for the local error are (atol:= 1e-6; rtol:= 
atol /100;). The HDMadapt procedure is applied to 
determine the approximate numeric solution. The 
simulation gives the figure of all solution functions 
(from y1 to y5). 

 
 

4 Results and Conclusion 
 
We studied a heated ferrofluid flow in magnetic 

field over a flat surface with boundary conditions. 
The coupled, nonlinear partial differential 

equations of MHD flow was transformed into a 
system of coupled and nonlinear ordinary 
differential equations by similarity analysis. 

After then, we solved the boundary value 
problem in Maple with HDM method.  

 

  
Figure 2. The upper and lower velocity distribution 

(Pr=10,  m=0)  
 

We obtained two different solutions, call them 
upper and lower solutions for velocity distribution 
(see Fig. 2), where the upper solution is in a good 
agreement with those published by Neuringer [14]. 
Figure 3. represents the lower velocity profiles 
obtained by numerical simulations. The solutions of 
the non-dimensional temperature can be seen on Fig 
4., where we denoted the temperature profiles 
corresponding to lower and upper velocity solutions 
by dashed and continuous lines, respectively. 
Similarly, in this case, the solutions by continuous 
lines are in a good agreement with published by 
Neuringer [14]. 

Figures 2-5. show the effect of parameter 𝛽𝛽 for 
the velocity and thermal distributions. If the 
parameter value 𝛽𝛽 increases, then the boundary 
layer thickness increases for both the velocity and 
thermal distribution solutions with continuous lines. 
An opposite effect can be seen in case of solutions 
denoted by dashed lines. 

 
 

 
Figure 3. Lower velocity distribution (Pr=10, m=0) 

 
 

 
Figure 4. The dual solutions for the thermal 

distribution  (Pr=10, m=0) 
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Figure 5. Upper thermal distribution 

(Pr=10, m=0) 
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