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Abstract: - The developed fluid flow in a channel filled with porous media is known as one of the classical issues 

in the field of fluid mechanics. Darcy’s, Brinkman's and Brinkman-Forchheimer's laws are well-known models 

for describing this kind of fluid. Darcy equation, as the most useful equations, is based on the description of fluid 

friction and porous matrix. In Brinkman equation, the term of viscosity similar to that of Laplacian in the Navier 

Stokes equation is added to the Darcy equation, and finally, Forchheimer term is able to account for second-order 

drag term due to the impact of solid in the fluid. Adding the Forchheimer term to the Darcy-Brinkman equation 

causes the nonlinearity of the equation. In this paper, in addition to the analytical response of this equation, the 

convective heat transfer coefficient is estimated. The effect of all parameters on the the Nusselt number is 

estimated. The results show, as the Forchheimer coefficient increases, Nusselt number declines; this downward 

trend is sharp in smaller Darcy numbers; hence Nusselt number tends to its asymptotic values. While, as Darcy 

number increase, the downtrend is getting close to a linear one. 
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1. Introduction 
Many fundamental heat transfer analyses have 

focused on convective flows in porous media in 

recent decades. Their vast range of applications in 

industrial applications, as well as in many natural 

circumstances such as high-performance building 

insulation, chemical catalytic reactors, packed 

spherical beds, grain storage, geothermal energy 

systems, oil recovery processes and so forth have 

piqued attention [1]. The Darcy equation is the most 

widely used equation to express fluid flow in porous 

media [2]. Considering the limitations of this method, 

especially in order to modify and include effects 

between fluid friction and porous matrix, 

Forchheimer improved the Darcy equation. The 

added term in Forchheimer equation cause non-

linearity of Brinkman equation [3]. 

Munaf et al [4] showed that the effect of the inertia 

term on fluid flow in the porous medium would be 

significant under the circumstances. In some cases, 

such as recovering oil wells that are driven by high-

pressure steam, when the pressure gradient is too 

high or the dense fluid flow, the inertia term will be 

effective. 

Subramaniam and Rajagopal [5] modeled and studied 

high-pressure fluid flow with high pressure gradient, 

taking into account the pressure-dependent viscosity. 

Kannan and Rajagopal [6] studied high-pressure fluid 

flow on a slopping plate with high pressure gradient 

resulted from gravity, and their result indicated the 

development of a boundary layer in which viscosity 

is focused. In both studies, the flow is steady and 

because of the particular assumed form, the inertia 

term is neglected. 

Vafai and Kim presented an analytical solution for 

laminar flow in a porous channel [7]. In this model, 

it was assumed that the boundary layer is not 

developed up to the center of the channel. 

Comparison of this solution to numerical solution 

reveals an appropriate agreement of results, if Darcy 

number is less than one. The reason for this is the 

increased thickness of the momentum boundary layer 

as the result of an increase in Darcy number [8]. 

Nield et al presented another analytical solution for 

the same problem without using an approximation of 

boundary layer. Contrary to the presented solution by 

Vafai and Kim, this solution is useable for flow with 

a Darcy number of more than one; and for the flows 
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with a Darcy number less than one does not have a 

desirable accuracy, since the error in calculating 

numerical integration, which is the base of this 

solution, increases [9]. 

 From another perspective, Fluid flow in a porous 

media is another form of a two-phase flow in which 

the relative motion of a fluid phase in a solid matrix 

is investigated. Although it is generally assumed that 

the solids matrix is rigid and static, and therefore the 

flow is considered as a single-phase flow. Various 

analyses have been presented by various researchers 

on the above-mentioned models of fluid flow in 

porous media. [10-13]. 

Due to the non-linearity of the Brinkman-

Forschimmer equation, this model has been studied 

frequently by numerical methods. In this paper, using 

the Liao homotopy [14] and the Kourosh method 

[15], an analytical solution suitable for different flow 

models in the channel and on the porous media is 

presented. The most important point of the proposed 

solution is the ease of use of the velocity profile, 

especially for the analysis of the convective heat 

transfer problem and the exergy analysis of flow. 

2. Governing Equations  
The incompressible flow of the Newtonian viscose 

fluid in the porous media and the steady state 

conditions are expressed by the equation of 

continuity and the Darcy-Brinkman Forchheimer 

equation. 

∇. 𝑉 = 0 (1) 

(𝑉. ∇)𝑉 = − 1
𝜌⁄ ∇𝑃 + 𝜈∇2𝑉 +

𝜈

𝐾
. 𝑉 +

𝐶𝐹𝑉|𝑉|

√𝐾
 (2) 

Where 𝑉 is the velocity vector, 𝜌 is the density of the 

fluid, 𝑣 is the fluid viscosity, and 𝑃 denotes the 

pressure of the fluid. Also, the third term on the right 

hand side of the equation is the Darcy term, in which 

𝐾 denotes Permeability of porous media; and the 

fourth term represents Forchheimer term, in which 𝐶𝐹 

denotes Forchheimer coefficient. 

Considering the developed flow inside a channel with 

flat walls filled with porous material (Figure 1), and 

as a result, regardless of the variations along the axis 

(𝜕/𝜕𝑥 = 0), the velocity profile would be one-

dimensional (𝑣 = 0). 

In this case, according to Eq. (2) we can write: 

0 = − 1
𝜌⁄

∂𝑝

𝜕𝑥
− 𝜈𝑢𝑦𝑦 −

𝜈

𝐾
𝑢 −

𝐶𝐹

√𝐾
𝑢|𝑢| (3) 

∂𝑝

𝜕𝑦
= 0 (4) 

In other words:  

{
𝑢 = 𝑢(𝑦)
𝑃 = 𝑃(𝑥)

 (5) 

The Eq. (3) and Eq. (4) are a general form for Darcy, 

Darcy-Forchheimer and Darcy-Lapwood-Brinkman 

models, which will result in one of the mentioned 

models, ignoring different terms. 
1

𝜌⁄ �̅�1�̅� + 𝜈
𝑘⁄ �̅� = 0 (6-1) 

1
𝜌⁄ �̅�1�̅� + 𝜈

𝑘⁄ �̅� +
𝐶𝐹

√𝑘
|�̅�|�̅� = 0 (6-2) 

𝜈�̅�𝑦𝑦 = 1
𝜌⁄ �̅�1�̅� + 𝜈

𝑘⁄ �̅� (6-3) 

By introducing dimensionless parameters as ∆𝑃 =
∆𝑃̅̅̅̅ /𝜌𝑣2, 𝑅𝑒 = 𝜌𝑣ℎ/𝜇, 𝑢 = �̅�/𝑈, 𝑦 = �̅�/𝐻 ,we can 

restate governing equations as following: 

𝐷𝑎 𝑅𝑒 𝐴 + 𝑢 = 0 

𝐷𝑎 𝑅𝑒 𝐴 + 𝑢 + 𝐶𝑓𝑅𝑒√𝐷𝑎|𝑢|𝑢 = 0 

𝐷𝑎 𝑅𝑒 𝐴 + 𝑢 = 𝐷𝑎𝑢𝑦𝑦 

(7) 

In general, the Darcy-Brinkman-Forchheimer 

equation is expressed as below: 

𝐷𝑎 𝑢𝑦𝑦 = 𝐷𝑎 𝑅𝑒 𝐴 + 𝑢 + 𝐶𝐹𝑅𝑒√𝐷𝑎|𝑢|𝑢 (8) 

Where  𝐴 = ∆𝑃/𝐿, 𝐿 = �̅�/ℎ ,∆𝑃 = ∆𝑃̅̅̅̅ /𝜌𝑈2  and 

finally 𝐷𝑎 = 𝐾/𝐻2. 

 
Figure 1. A channel with flat walls filled with porous 

material 

 

3. Asymptotic Solution for 
Large Darcy Numbers

  
For 𝐷𝑎 ≫ and by assuming that 1/√𝐷𝑎 = 𝜀, we can 

rewrite Eq. (8) as following: 

𝑢𝑦𝑦 = 𝑅𝑒 𝐴 + 𝜀 𝐶𝐹𝑅𝑒|𝑢|𝑢 + 𝜀2𝑢 (9) 

By considering 𝑢 = 𝑢0 + 𝜀𝑢1 + 𝜀2𝑢2 + ⋯, the 

resulting equations in terms of different 

exponentiation are: 

𝜀0:       𝑢0 𝑦𝑦 = 𝑅𝑒 𝐴 

𝜀1:       𝑢1 𝑦𝑦 = 𝑢0
2𝑅𝑒 𝐶𝐹 

𝜀2:      𝑢2 𝑦𝑦 = 2𝑅𝑒 𝐶𝐹𝑢0𝑢1 + 𝑢0  

𝜀3:         𝑢3 𝑦𝑦 = 𝑅𝑒 𝐶𝐹(𝑢1
2 + 2𝑢0𝑢2) + 𝑢1 

. 

.. 

… 

(10) 

 

The boundary condition for all of these equations is:  

𝑢𝑖(1) = 𝑢𝑖(−1) = 0 is due to the no-slip condition 

on the wall. The yield set of linear equations can 
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easily be solved. The following equation expresses 

analytical solution till (up to) second order of 𝜀: 

𝑢(𝑦) =
1

2
𝐴𝑅𝑒(𝑦2 − 1) +

(11𝐴2𝐶𝐹𝑅𝑒3−15𝐴2𝐶𝐹𝑅𝑒3𝑦2+5𝐴2𝐶𝐹𝑅𝑒3𝑦4−𝐴2𝐶𝐹𝑅𝑒3𝑦6)

120𝐷𝑎0.5 +

(−31500𝐴𝑅𝑒−4919𝐴3𝐶𝐹
2𝑅𝑒5+37800𝐴𝑅𝑒𝑦2)

151200𝐷𝑎
+

6930𝐴3𝐶𝐹
2𝑅𝑒5𝑦2−6300𝐴𝑅𝑒𝑦4−2730𝐴3𝐶𝐹

2𝑅𝑒5

151200𝐷𝑎
+. …  

 (11) 
 
But the answer can be obtained with higher degrees 

of accuracy. Figure (2) shows the velocity profile for 

a Darcy number of 1,000 for different Re and 

𝐶𝐹  𝑁𝑜𝑚𝑏𝑒𝑟. 
 

 
Figure 2. Velocity profile for a Darcy number of 1,000 

with different Reynolds and 𝐶𝐹  number. 

 
4. Velocity profile in different 

models 
Since Darcy and Darcy-Forchheimer equations are 

algebraic equations, velocity profiles can easily be 

found in them. Although, these two equations do not 

satisfy boundary conditions. 

𝑢 = −𝐷𝑎 𝑅𝑒 𝐴 (12) 

𝑢(𝑦) =
−1 + √1 − 4𝑅𝑒2𝐶𝐹(𝐷𝑎)3/2

2𝐶𝑓𝑅𝑒√𝐷𝑎
 (13) 

Where Eq. (12) and Eq. (13) show velocity profiles 

in Darcy equation and in Darcy-Forchheimer 

equation, respectively.  

The same solution to the Darcy-Lapword-Brinckman 

equation, considering the boundary conditions 

𝑢(1) = 𝑢(−1) = 0, can be shown as: 

𝑢(𝑦) = 𝐴𝑅𝑒𝐷𝑎(−1 + 𝐶𝑜𝑠ℎ[
𝑥

√𝐷𝑎
]𝑆𝑒𝑐ℎ[

1

√𝐷𝑎
] (14) 

The Forchheimer term transforms the flow equation 

into a nonlinear equation. 

In general, for different values of the Darcy number 

Darcy-Brinkman-Forchheimer equation is analyzed 

with numerical methods by various estimates. Here is 

an analytical asymptotic method for obtaining a 

solution for the equation. 

By rewriting equation (8) as the following form, and 

introducing the 𝒦 parameter, we can obtain this 

structure: 

Da 𝑢𝑦𝑦 = 𝐷𝑎 𝑅𝑒 𝐴 + 𝒦𝑢 + 𝒦2𝐶𝑓𝑅𝑒√𝐷𝑎|𝑢|𝑢 (15) 

Specifically, when 𝒦 tend to 1 (𝒦 → 1 ), the Eq. (15) 

will be same as Eq. (8). Assuming the solution of Eq. 

(15) as: 

𝑢 = 𝑢0 + 𝒦𝑢1 + 𝒦2𝑢2 + ⋯ (16) 

And by calculating the limit of that for 𝒦 → 1 , an 

asymptotic solution for Eq. (8) would be derived. By 

solving the resulting linear equations, the following 

solution is obtained till the second order of 𝒦. 

𝑢(𝑥) = 𝐴 𝑅𝑒 (
1−𝑥2

2
) + 𝐷𝑎

−1(0.0083 −

0.25𝑥2 + 0.04167𝑥4) +

𝐴𝐶𝐹𝐷𝑎
0.5𝑅𝑒2(0.09167 − 0.125𝑥2 +

0.04167𝑥4 − 0.00833𝑥6) + 𝐷𝑎
−2(0.08472 −

0.10417𝑥2 + 0.02083𝑥4 − 0.00139𝑥6) + ⋯  

(17) 

We can calculate the coefficient 𝐴 by considering the 

fact that ∫ 𝑢𝑑𝑦 = 1
1

0
. 

𝐴 =
8.75𝑅𝑒

𝐶𝐹𝑅𝑒3 ((−0.33 −
0.053

𝐷𝑎2 −
0.133

𝐷𝑎
) +

((0.33 +
0.053

𝐷𝑎2 −
0.133

𝐷𝑎
)

2
+

0.228𝐶𝐹𝑅𝑒

𝐷𝑎0.5 
)

0.5

)  

(18) 

Figure (3) shows the velocity profile of Eq. (17) for  

𝐶𝐹 = 0 (Brinkman flow) for different Re and Da 

Number. 

 

 
Figure 3. Velocity profile for 𝐶𝐹 = 0 (Brinkman flow) for 

different Re and Da Number. 

 

In Figure (4.a), the impact of Forchheimer  

coefficient  on variation of velocity, Da=100  and 
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Re=100, is shown. Also, the effect of Darcy number 

on velocity profile for 𝐶𝐹 = 0.5 and 𝑅𝑒 = 10 can be 

seen in Fig (4.b). 

 
(a) 

 
(b) 
Figure 4.  a) Variation of velocity for different values of 

in 𝐶𝐹 = 0 and 𝐶𝐹 = 1 b) Effect of Darcy number on 

velocity profile for 𝐶𝐹 = 0.5 and 𝑅𝑒 = 10. 

 

5. The solution of energy equation 
The energy equation for the developed flow in fully 

porous channel can be shown as: 

ρ𝐶𝑝 �̅�
𝜕�̅�

𝜕𝑥
= 𝐾

𝜕

𝜕�̅�
(
𝜕�̅�

𝜕�̅�
) (19) 

Introducing dimensionless variable 𝜃 = (𝑇 − 𝑇𝑤)/
(𝑇𝑚 − 𝑇𝑤), in which 𝑇𝑤 is wall temperature and 

𝑇𝑚 = ∫ 𝑇𝑑𝑦
1

0
. Eq. (19) can be rewritten in this form: 

𝐻𝜌𝐶𝑝𝑈

𝑘
𝑢

𝜕𝜃

𝜕𝑥
=

𝜕2𝜃

𝜕𝑦2
 (20) 

On the other hand 

(𝑇𝑚 − 𝑇𝑤)𝜌𝐶𝑝𝑈
𝜕𝜃

𝜕𝑥
= 𝑞′′ = 2ℎ(𝑇𝑚 − 𝑇𝑤) (21) 

And by replacing the final equation, energy can be 

expressed in terms of the dimensionless variable 𝜃: 

2𝜃′′(𝑦) + 𝑢. Nu = 0 (22) 

And the boundary conditions are 

{
𝜃′(0) = 0
𝜃(1) = 0

 (23) 

Placement of the specific velocity rate from the 

solution of various models in Eq. (22) and the 

solution of the resulting linear differential equation, 

will result in the temperature rate for each of the 

models. 

For the velocity of the Darcy-Brinkman-Forchheimer 

model, the result dimensionless temperature equation 

can be written as: 

θ(y) =
1

𝐷𝑎5.5 (0.0172 A𝐷𝑎3.𝑁𝑢 𝑅𝑒 +

0.0424 A𝐷𝑎4.𝑁𝑢 𝑅𝑒 + 0.1042 A𝐷𝑎5.𝑁𝑢 𝑅𝑒 −
0.02128 A𝐷𝑎3.𝑁𝑢 𝑅𝑒𝑦2 −
0.052A𝐷𝑎4.𝑁𝑢 𝑅𝑒𝑦2 −
0.125A𝐷𝑎5.𝑁𝑢 𝑅𝑒𝑦2 +
0.00043A𝐷𝑎3.𝑁𝑢 𝑅𝑒𝑦4 +
0.01042A𝐷𝑎4.𝑁𝑢 𝑅𝑒𝑦4 +
0.0208A𝐷𝑎5.𝑁𝑢 𝑅𝑒𝑦4 −
0.00035A𝐷𝑎3.𝑁𝑢 𝑅𝑒𝑦6 −
0.0007A𝐷𝑎4.𝑁𝑢 𝑅𝑒𝑦6 +
0.00001A𝐷𝑎5.𝑁𝑢 𝑅𝑒𝑦6)+….  

(24) 

Also considering the definition of 𝑇𝑚: 

𝑈𝑇𝑚𝐻 = ∫ �̅�
𝐻

0

𝑇𝑑�̅� (25a) 

1 =
𝑇𝑚 − 𝑇𝑤

𝑇𝑚 − 𝑇𝑤
= ∫ 𝑢(

1

0

𝑇 − 𝑇𝑤

𝑇𝑚 − 𝑇𝑤
)𝑑𝑦 = ∫ 𝑢

1

0

𝜃𝑑𝑦 (25b) 

And finally using the equations obtained for 𝜃 and 𝑢, 

we can obtain Nu number for each model by 

calculating the integral of the problem from their 

product and equating it with one. 

For the general Darcy-Brinkman-Forchheimer 

model, the general form of Nusselt number can be 

written as: 

𝑁𝑢 =
24𝐷𝑎11

𝑀 + 𝑁
 (26) 

Where: 

𝑀 = 𝐴2𝑅𝑒2(0.0175𝐷𝑎7. + 0.08623𝐷𝑎8. +
0.3190𝐷𝑎9. + 0.6476𝐷𝑎11.) + ⋯  

𝑁 = 𝐴2𝑅𝑒2 (0.0372𝐴𝐶𝐹𝐷𝑎8.5𝑅𝑒2 +

0.0918𝐴𝐶𝐹𝐷𝑎9.5𝑅𝑒2 + 0.2264𝐴𝐶𝐹𝐷𝑎10.5𝑅𝑒2 +

𝐷𝑎10.(0.5249 + 0.0198𝐴2𝐶𝐹
2𝑅𝑒4)) + ⋯.  

Figure (5) depicts the variations of Nusselt number in 

terms of Darcy number for Darcy-Brinkman-

Forchheimer flow, when CF is 0.5 . 
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Figure 5. Variations of Nusselt number in terms of Darcy 

number for Darcy-Brinkman-Forchheimer flow in 𝐶𝐹 =
0.5 
Figure (6) shows the effect of the Forchheimer 

coefficient on the  Nusselt number for certain Darcy 

values in comparison with each other. By increasing 

Forchheimer coefficient, Nusselt number decreases; 

for smaller quantities of Darcy number, this 

downtrend is sharp and Nusselt number tends to its 

asymptotic values. While, as the Darcy number 

increases, the downtrend approaches to linear trend. 

which can be shown in form of 24𝐷𝑎11/𝑀 for 

Darcy-Lapwood-Brinkman model, neglecting terms 

that consist of 𝐶𝐹. The variation of Nusselt number in 

terms of Darcy number, for Brinkman flow, can be 

shown as Figure (7). 

 
Figure 6. The effect of Forchheimer coefficient on Nusselt 

number for certain Darcy values 

 

 

 
Figure 7. The variation of Nusselt number in terms of 

Darcy number, for Brinkman flow. 

 

As can be seen, when Darcy number tends to 

extremely large values (𝐷𝑎 ≫), it is observed that the 

flow approaches poiseuille flow in channel; 

Therefore, Nusselt number tends to the conventional 

value of 4.117. 

6. Conclusion 
In this paper, an analytical solution is proposed for 

different flow models in a porous media channel. The 

most important point of the proposed solution is the 

ease of use of the velocity profile, especially for the 

analysis of the heat transfer problem and the exergy 

analysis of flow. 

Adding the Forchheimer term to the Darcy- 

Brinkman equation leads to the nonlinearity of the 

equation. In this article in addition to presenting an 

analytical solution for this equation, convective heat 

transfer coefficient is obtained. The effect of all of 

the parameters on the Nusselt number is also 

estimated. 

The results indicate that an increase in the 

Forchheimer coefficient causes a decline in the 

Nusselt number. In small values of Darcy number, 

this downtrend is sharp and happens suddenly; also, 

Nusselt number tends to its asymptotic values. While 

the increase of Darcy number makes this downtrend 

become close and closer to a linear trend. 
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