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1 Introduction 

It has long been recognized that fluid viscosity 

increases exponentially with pressure. This 

realization dates back to the nineteenth Century and 

the works of Stokes [1] and Barus [2]. Barus [2] 

formulated an exponentially increasing relationship 

between viscosity and pressure of the form  

𝜇 = 𝜇0𝑒
𝛼(𝑝−𝑝0)                                                        

(1) 

where 𝜇 is the viscosity, 𝑝 is the pressure, 𝜇0 is the 

viscosity at reference pressure 𝑝0, and 𝛼 > 0 is the 

pressure-dependence coefficient, [3]. 

For small values of 𝛼 or small pressure differences, 

relationship (1) between viscosity and pressure can 

be expressed as, [3] 

𝜇 = 𝜇0[1 + 𝛼(𝑝 − 𝑝0)]                                           

(2) 

While the above relationships are suitable for fluid 

with small molecules, long chain molecules (the 

likes of polymers and some oil mixtures) require 

other forms of viscosity-pressure relations, [3,4]. It 

has also been realized that the effect of pressure on 

density of a fluid is small as compared to the effect 

of pressure on viscosity, [3]. Accordingly, it suffices 

in the current work to study incompressible fluid 

flow with pressure-dependent viscosity as governed 

by the equation of continuity and the Navier-Stokes 

equations, written here for steady flow, in the 

absence of body forces, in the following forms, 

respectively 

∇ ∙ �⃗� = 0                                                                     

(3) 

𝜌�⃗� ∙ ∇�⃗� = −∇𝑝 + ∇ ∙ �⃗�                                               

(4) 

where 
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�⃗� = −𝑝𝐼 + 2𝜇(𝑝)�⃗⃗�                                                  

(5) 

is the Cauchy stress tensor in which  

�⃗⃗� =
1

2
(∇�⃗� + (∇�⃗� )𝑇                                                 

(6) 

is the symmetric part of the velocity gradient, 𝑝 is 

the pressure, 𝜇(𝑝) is the viscosity as a function of 

pressure, �⃗�  is the velocity field, and 𝜌 is the constant 

fluid density. 

Over the past quarter of a century, there has been an 

increasing interest in flow of pressure-dependent 

fluids through porous media. While models of flow 

through porous media have been in existence since 

the mid-nineteenth Century, fluid viscosity had been 

mainly treated as constant. Emerging applications of 

flow through porous media have given rise to the 

need for flow models with pressure-dependent 

viscosity. These applications arise in a number of 

natural and industrial settings that involve chemical 

and process technologies, such as enhanced oil 

recovery, carbon sequestration, crude oil pumping, 

lubrication mechanisms with porous linings, 

groundwater pumping, filtration problems and 

microfluidics, to name only a few, [3, 5, 6, 7, 8, 9, 

10].  These and other applications underscore the 

fundamental importance of accurate modelling of 

flow through porous media of fluids with pressure-

dependent viscosities and providing solutions to 

initial and boundary value problems. 

The modelling aspect asserts that the form of 

momentum equations used must include a pressure-

dependent drag function to account for pore-level 

effects of the porous matrix (as in the generalized 

Darcy’s equation and Forchheimer’s equations) and 

a shear viscosity that is a function of pressure (as in 

the case of generalized Brinkman’s equation, where 

viscous shear effects are important). A number of 

models describing the flow of fluids with pressure-

dependent viscosities through porous media are 

available in the literature, and have been derived 

using homogenization techniques, thermodynamic 

balance, mixture theory, and intrinsic volume 

averaging (cf. [9-13]). Of interest to the current 

work is the generalized Brinkman equation, derived 

in [9], and takes the following form 

𝜌�⃗� ∙ ∇�⃗� = −∇𝑝 + ∇ ∙ �⃗� − 𝛼(𝑝)�⃗�                             

(7) 

where 𝛼(𝑝) is the drag coefficient that is also 

pressure-dependent.  Various forms and 

combinations of 𝜇(𝑝) and 𝛼(𝑝) have been 

suggested and usd in the literature [11, 14], popular 

among which are the following forms: 

𝜇(𝑝) = 𝐴𝑒𝑎𝑝  ,      𝛼(𝑝) = 𝐵𝑒𝑏𝑝                             

(8) 

𝜇(𝑝) = 𝐴𝑒𝑎𝑝        𝛼(𝑝) = 𝐵(𝑝/𝑝0)
𝑚                     

(9) 

𝜇(𝑝) = 𝐴(𝑝/𝑝0)
𝑛        𝛼(𝑝) = 𝐵𝑒𝑏𝑝                    

(10) 

𝜇(𝑝) = 𝐴(𝑝/𝑝0)
𝑛        𝛼(𝑝) = 𝐵(𝑝/𝑝0)

𝑚             

(11) 

Solutions to flow problems involving Navier-Stokes 

equations with pressure-dependent viscosity depend 

on whether one deals with internal flow, external 

flow, or unconfined flow with infinite domains. 

Kalogirou, Poyiadji, and Georgiou, [15], compiled 

analytical solutions for internal, Poiseuille-type, 

steady flows. Although solutions to external flows 

are rare, [3], some elegant solutions have been 

provided in the literature, notable among which  

is the creeping flow past a sphere for fluids with 

pressure-dependent viscosity was also studied by 

Housiadas, Georgiou, and Tanner [3]. Study of 

compressible flow has also been accomplished, 

where Housiadas and Georgiou, [16], provided 

new solutions for weakly compressible 

Newtonian Poiseuille flows with pressure-

dependent viscosity.   

Solutions to flow problems with pressure-dependent 

viscosity in unconfined domains have been obtained 

under various assumptions, and using a plethora of 

techniques, have been reviewed, reported and 

implemented in the work of Naeem [17], and the 

vast literature reported in his work. These include 
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methods of solution where the streamfunction is 

specified or the vorticity distribution is given.  

Solutions to the generalized Brinkman equation are 

challenging since inherent within this model are 

nonlinearities of the Navier-Stokes equations, with 

the added difficulty of handling viscosity variations 

and drag function as functions of pressure. Danish 

et.al., [18], provided first exact solutions for mixed 

boundary value problems concerning the motions of 

fluids with exponential dependence of viscosity on 

pressure. Hron et.al., [4], and the references therein, 

provided solutions for unidirectional and special 

flows. Pažanin et.al. [19] provided asymptotic 

analysis of the generalized Brinkman’s equation for 

two-dimensional flow. Alharbi et.al, [20], used a 

technique based on the concept of Riabouchinsky 

flow in which the streamfunction of a two-

dimensional flow is assumed to be a function of one 

space variable, and combinations of functions of 

single variables. They, [20], provided solutions of a 

special form of the generalized Brinkman’s 

equation, one in which the drag function is a 

function of pressure scaled by variable permeability 

of the porous medium. The permeability function 

introduces an additional variable in the governing 

equations, thus rendering the system of governing 

equations under-determined. In order to circumvent 

this situation, Alharbi et.al. [20] introduced a 

condition, derived from the specified 

streamfunction, that was satisfied by the 

permeability function.  

The Riabouchinsky approach has received 

considerable success in the understanding of flow 

phenomena and the introduction of methodologies 

based on this approach. Naeem [17] successfully 

implemented this approach in his study of Navier-

Stokes flow of a fluid with pressure-dependent 

viscosity. In this work, we follow Naeem’s work 

[17] and assume the form streamfunction in order to 

obtain solutions to equation (7). We deliberately 

chose the form of streamfunction so that the 

resulting flow is of zero vorticity. This implies that 

the flow is both viscous and irrotational. Irrotational 

flow of viscous fluids has recently received 

attention in the literature (cf. [21] and [ ] and the 

references therein). In their elegant analysis, Sirakov 

et.al. [21] described the main features of steady 

irrotational flow in a fluid with constant viscosity. 

Their goal was is to illustrate the different roles 

played by the identically zero viscous forces and the 

non-zero viscous stresses, in addition to studying the 

behavior of stagnation pressure, that is constant 

along a streamline, and stagnation enthalpy, which 

changes through the flow. In their work, [21] they 

also discussed the role viscous stresses on the 

boundary play in creating these behaviors. In the 

current work, the examples used result in 

irrotational flow even for non-constant viscosity. 

 

2 Governing Equations  

The flow of a fluid with pressure-dependent through 

a porous sediment, in the absence of heat transfer 

effects and body forces, is governed by the 

continuity equation (1) and momentum equations 

(7), above. Assuming the flow is in two space 

dimensions, we let �⃗� = (𝑢, 𝑣), and write equations 

(1) and (7) in the following components’ form: 

𝑢𝑥 + 𝑣𝑦 = 0                                                           

(12) 

1

2
(𝑞2)𝑥 − 𝑣(𝑣𝑥 − 𝑢𝑦) = −𝑃𝑥 +

1

𝜌
[(2𝜇𝑢𝑥)𝑥 +

(𝜇𝑢𝑦 + 𝜇𝑣𝑥)𝑦] −
𝛼(𝑝)

𝜌
𝑢                                         

(13) 

1

2
(𝑞2)𝑦 + 𝑢(𝑣𝑥 − 𝑢𝑦) = −𝑃𝑦 +

1

𝜌
[(2𝜇𝑣𝑦)𝑦 +

(𝜇𝑢𝑦 + 𝜇𝑣𝑥)𝑥] −
𝛼(𝑝)

𝜌
𝑣                                         

(14) 

where subscript notation denotes partial 

differentiation, and 

𝑃 =
𝑝

𝜌
                                                                      

(15) 

𝑞2 = 𝑢2 + 𝑣2                                                          

(16) 

with 𝑞2 being the square of the speed. 

Assuming that viscosity and drag depend on the 

pressure according to the following positive, and 

increasing relationships: 
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𝜇(𝑝) = 𝑎𝜌𝑃                                                             

(17) 

𝛼(𝑝) = 𝑏𝜌𝑃                                                            

(18) 

where 𝑎 and 𝑏 are known positive constants, then 

(13) and (14) can be written, respectively, as 

1

2
(𝑞2)𝑥 − 𝑣(𝑣𝑥 − 𝑢𝑦) = (2𝑎𝑢𝑥 − 1)𝑃𝑥 − 𝑎𝑃(𝑣𝑥 −

𝑢𝑦)𝑦 + 𝑎𝑃𝑦(𝑢𝑦 + 𝑣𝑥) − 𝑏𝑃𝑢                                

(19) 

1

2
(𝑞2)𝑦 + 𝑢(𝑣𝑥 − 𝑢𝑦) = −(2𝑎𝑢𝑥 + 1)𝑃𝑦 +

𝑎𝑃(𝑣𝑥 − 𝑢𝑦)𝑥 + 𝑎𝑃𝑥(𝑢𝑦 + 𝑣𝑥) − 𝑏𝑃𝑣     (20) 

Continuity equation (12) implies the existence of the 

streamfunction 𝜓(𝑥, 𝑦) such that: 

𝜓𝑦 = 𝑢     (21) 

𝜓𝑥 = −𝑣     (22) 

Vorticity, 𝜔(𝑥, 𝑦), is defined as: 

𝜔 = ∇ × �⃗� = 𝑣𝑥 − 𝑢𝑦  

= −𝜓𝑥𝑥 − 𝜓𝑦𝑦 = −∇2𝜓                                       

(23) 

Using equations (21) and (22) in equations (19) and 

(20), we obtain, respectively: 

1

2
(𝜓𝑥

2 + 𝜓𝑦
2)𝑥 − 𝜓𝑥∇

2𝜓 = (2𝑎𝜓𝑥𝑦 − 1)𝑃𝑥 +

𝑎𝑃∇2𝜓𝑦 + 𝑎𝑃𝑦(𝜓𝑦𝑦 − 𝜓𝑥𝑥) − 𝑏𝑃𝜓𝑦                    

(24) 

1

2
(𝜓𝑥

2 + 𝜓𝑦
2)𝑦 − 𝜓𝑦∇

2𝜓 = −(2𝑎𝜓𝑥𝑦 + 1)𝑃𝑦 −

𝑎𝑃∇2𝜓𝑥 + 𝑎𝑃𝑥(𝜓𝑦𝑦 − 𝜓𝑥𝑥) + 𝑏𝑃𝜓𝑥                   

(25) 

The problem at hand is thus reduced to solving 

equations (24) and (25) for the streamfunction 

𝜓(𝑥, 𝑦) and the pressure 𝑃(𝑥, 𝑦). Viscosity and drag 

functions, velocity components and vorticity, can be 

obtained using equations (17), (18), (21), (22) and 

(23). 

3 Method of Solution 

      In order to solve (24) and (25), we assume a 

functional form of 𝜓(𝑥, 𝑦) and then solve for the 

pressure 𝑃(𝑥, 𝑦). In this work we consider the 

following two cases: 

Case 1: The streamfunction is a function of one of 

the coordinate variables. 

Case 2: The streamfunction is linear in one of the 

coordinate variables. 

Case 1: Assuming that the streamfunction is a 

function of y only, namely 

𝜓(𝑥, 𝑦) = 𝑓(𝑦)                                                      

(26) 

wherein “prime” notation denotes ordinary 

differentiation. Velocity components and vorticity, 

equations (21)-(23), take the following forms 

𝑢 = 𝑓′(𝑦)                                                               

(27) 

𝑣 = 0                                                                        

(28) 

𝜔 = −𝑓′′(𝑦)                                                           

(29) 

Using (26) in (24) and (25) we obtain, respectively 

𝑃𝑦 = 𝑎𝑃𝑥𝑓′′(𝑦)                                                      

(30) 

𝑃𝑥 = 𝑎𝑃𝑓′′′(𝑦) + 𝑎𝑃𝑦𝑓′′(𝑦) − 𝑏𝑃𝑓′(𝑦)                   

(31) 

Using (30) in (31), we obtain 

𝒑𝒙

𝑷
=

[𝒂𝒇′′′(𝒚)−𝒃𝒇′(𝒚)]

[𝟏−𝒂𝟐(𝒇′′(𝒚))𝟐]
=

[𝒂𝒇′′′(𝒚)]

[𝟏−𝒂𝟐(𝒇′′(𝒚))𝟐]
−

[𝒃𝒇′(𝒚)]

[𝟏−𝒂𝟐(𝒇′′(𝒚))𝟐]
               

                                                                             (32) 

Equation (32) can be written as 
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𝝏𝒍𝒏𝒑

𝝏𝒙
=

𝟏

𝟐

𝒅

𝒅𝒚
𝒍𝒏 [

𝟏+𝒂𝒇′′(𝒚)

𝟏−𝒂𝒇′′(𝒚)
] −

𝒃𝑓′(𝑦)

[𝟏−𝑎2(𝑓′′(𝑦))𝟐]
               

(33) 

Integrating (33) with respect to 𝑥, we obtain 

𝑙𝑛𝑃 = {
1

2

𝑑

𝑑𝑦
𝑙𝑛 [

1+𝑎𝑓′′(𝑦)

1−𝑎𝑓′′(𝑦)
] −

𝑏𝑓′(𝑦)

[1−𝑎2(𝑓′′(𝑦))2]
} 𝑥 +

𝑙𝑛𝐹(𝑦)                                                                   

(34) 

where 𝐹(𝑦) is an arbitrary function of 𝑦. 

Equation (34) can be written as 

𝑃 = 𝐹(𝑦)𝑒𝑥𝑝 (
𝑥

2
𝐺(𝑦))                                         

(35) 

where 

𝐺(𝑦) =
𝑑

𝑑𝑦
𝑙𝑛 [

1+𝑎𝑓′′(𝑦)

1−𝑎𝑓′′(𝑦)
] −

2𝑏𝑓′(𝑦)

[1−𝑎2(𝑓′′(𝑦))2]
              

(36) 

From (35), we obtain 

𝑃𝑥 =
𝐹(𝑦)𝐺(𝑦)

2
𝑒𝑥𝑝 (

𝑥

2
𝐺(𝑦))                                   

(37) 

𝑃𝑦 = [𝐹′(𝑦) +
𝑥

2
𝐹(𝑦)𝐺′(𝑦)]𝑒𝑥𝑝 (

𝑥

2
𝐺(𝑦))            

(38) 

Using (37) and (38) in (30), we obtain 

[𝐹′(𝑦) +
𝑥

2
𝐹(𝑦)𝐺′(𝑦)] = 𝑎

𝐹(𝑦)𝐺(𝑦)

2
𝑓′′(𝑦)            

(39) 

By equating powers of 𝑥 in (39), we obtain 

𝐹′(𝑦) = 𝑎
𝐹(𝑦)𝐺(𝑦)

2
𝑓′′(𝑦)     (40) 

𝐹(𝑦)𝐺′(𝑦) = 0                                                        

(41) 

Equations (40) and (41) yield: 

𝐹(𝑦) = exp (
𝑎

2
∫𝑓′′(𝑦)𝐺(𝑦)𝑑𝑦)                             

(42) 

and 

𝐺(𝑦) = 𝐶1                                                               

(43) 

where 𝐶1 is a constant. 

Using (43), and integrating the RHS of equation 

(42), then equation (42) is replaced by 

𝐹(𝑦) = 𝐶2 exp (
𝑎

2
𝐶1𝑓

′(𝑦))      (44) 

where 𝐶2 is a constant. In addition, using (43), 

equation (36) can be written as 

𝑑

𝑑𝑦
𝑙𝑛 [

1+𝑎𝑓′′(𝑦)

1−𝑎𝑓′′(𝑦)
] −

2𝑏𝑓′(𝑦)

[1−𝑎2(𝑓′′(𝑦))2]
= 𝐶1    (45) 

and the pressure equation (35) is replaced by: 

𝑃 = 𝐹(𝑦)𝑒𝑥𝑝 (
𝐶1𝑥

2
)     (46) 

Using (44) in (46) we obtain 

𝑃 = 𝐶2 exp (
𝐶1

2
(𝑥 + 𝑎𝑓′(𝑦))                                

(47) 

The pressure distribution and flow quantities thus 

hinge on the function 𝑓(𝑦) that must be chosen such 

that (45) is satisfied. Equation (45) yields 

𝑓′′′(𝑦) +
𝑎𝐶2

2
[𝑓′′(𝑦)]2 −

𝑏𝑓′(𝑦)

𝑎
=

𝐶1

2𝑎
                      

(48) 

Now, equation (48) is satisfied by the linear 

polynomial function 

𝑓(𝑦) = 𝐴𝑦 + 𝐵                                                      

(49) 

 

where A and B are known constants.  

Using (49) in (48), we obtain 𝐶1 = −2𝑏𝐴 and 

equation (47) gives the following pressure 

distribution: 

𝑃 = 𝐶2 exp(−𝑏𝐴(𝑥 + 𝑎𝐴)                                    

(50) 

Constant  𝐶2 in the pressure distribution (50) can be 

determined with the imposition of a condition on the 

pressure. For instance, if 𝑃(0,0) = 𝑃0 then (50) 
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yields 𝐶2 = 𝑃0 exp(𝑏𝑎𝐴2), and the pressure 

distribution, viscosity and drag functions become, 

respectively, 

𝑃 = 𝑃0 exp(−𝑏𝐴𝑥)                                                  

(51) 

𝜇(𝑝) = 𝑎𝜌𝑃0 exp(−𝑏𝐴𝑥)                                        

(52) 

𝛼(𝑝) = 𝑏𝜌𝑃0 exp(−𝑏𝐴𝑥)                                     

(53) 

The flow quantities of streamfunction, vorticity and 

velocity components are determined from equations 

(26)-(29) as: 

 

𝜓 = 𝐴𝑦 + 𝐵                                                           
(54) 

𝑢 = 𝐴                                                                     
(55) 

𝑣 = 0                                                                         
(56) 

𝜔 = 0                                                                       
(57) 

Streamfunction is a linear function of 𝑦 with a 

tangential velocity component 𝑢 = 𝐴 > 0, and a 

zero normal velocity component of velocity. Since 

vorticity is zero, the flow is irrotational. Pressure, 

viscosity and drag function are functions of 𝑥. With 

𝑎, 𝑏, 𝐴 > 0, pressure is bounded with  

lim
𝑥→∞

𝑃0 exp(−𝑏𝐴𝑥) = 𝑃0                                         

(58)  

This implies that viscosity and drag functions are 

also bounded. 

CASE 2: Assume that  

𝜓(𝑥, 𝑦) = 𝑦ℎ(𝑥) = 𝑦(𝐴𝑥 + 𝐵)                            

(59) 

Then 

𝑢 = 𝜓𝑦 = ℎ(𝑥) = 𝐴𝑥 + 𝐵                                    

(60) 

𝑣 = −𝜓𝑥 = −𝑦ℎ′(𝑥) = −𝐴𝑦                               

(61) 

𝜔 = −𝜓𝑥𝑥 − 𝜓𝑦𝑦 = −𝑦ℎ′′(𝑥) = 0                      

(62) 

Using (60)-(62) in (19) and (20), we obtain, 

respectively 

𝑃𝑥 −
(𝑏𝐴𝑥+𝑏𝐵)

(2𝑎𝐴−1)
𝑃 =

𝐴2𝑥+𝐴𝐵

(2𝑎𝐴−1)
                                     

(63) 

(2𝑎𝐴 + 1)𝑃𝑦 = 𝐴(𝑏𝑃 − 𝐴)𝑦                                 

(64) 

Solution to (63) takes the form 

𝑃 =
𝐴

𝑏
+ 𝐹(𝑦)exp [− 

(
𝑏𝐴

2
𝑥2+𝑏𝐵𝑥)

(2𝑎𝐴−1)
]                         

(65) 

with the condition that 𝑎𝐴 ≠
1

2
. The function 𝐹(𝑦) is 

an arbitrary function of 𝑦 that is to be determined. 

Differentiating (65) with respect to 𝑦, we obtain 

𝑃𝑦 = 𝐹′(𝑦)exp [− 
(
𝑏𝐴

2
𝑥2+𝑏𝐵𝑥)

(2𝑎𝐴−1)
]                              

(66) 

Equations (64) and (66) yield 

𝐹′

𝐹
=

𝑏𝐴

(2𝑎𝐴+1)
𝑦                                                        

(67) 

Solution to (67) is given by 

𝐹(𝑦) = 𝑐3𝑒𝑥𝑝 (
𝑏𝐴

2(2𝑎𝐴+1)
𝑦2)                                 

(68) 

where 𝑐3 is an arbitrary constant. 

Using (68) in (65), we obtain the pressure 

distribution 

𝑃 =
𝐴

𝑏
+ 𝑐3𝑒𝑥𝑝 (

𝑏𝐴𝑦2

2

(2𝑎𝐴+1)
− 

𝑏𝐴𝑥2

2
+𝑏𝐵𝑥

(2𝑎𝐴−1)
)                    

(69) 
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Letting 𝑃(0,0) = 𝑃0, equation (69) gives 𝑐3 = 𝑃0 −
𝐴

𝑏
 and (69) becomes 

𝑃 =
𝐴

𝑏
+ (𝑃0 −

𝐴

𝑏
)𝑒𝑥𝑝 (

𝑏𝐴𝑦2

2

(2𝑎𝐴+1)
− 

𝑏𝐴𝑥2

2
+𝑏𝐵𝑥

(2𝑎𝐴−1)
)       

(70) 

Using (70) in (17) and (18), we obtain the following 

viscosity and drag functions, respectively: 

𝜇(𝑝) = 𝑎𝜌 [

𝐴

𝑏
+

(𝑃0 −
𝐴

𝑏
)𝑒𝑥𝑝 (

𝑏𝐴𝑦2

2

(2𝑎𝐴+1)
− 

𝑏𝐴𝑥2

2
+𝑏𝐵𝑥

(2𝑎𝐴−1)
)
]                                                            

                                                                             (71) 

𝛼(𝑝) = 𝑏𝜌 [

𝐴

𝑏
+

(𝑃0 −
𝐴

𝑏
)𝑒𝑥𝑝 (

𝑏𝐴𝑦2

2

(2𝑎𝐴+1)
− 

𝑏𝐴𝑥2

2
+𝑏𝐵𝑥

(2𝑎𝐴−1)
)
]        

                                                                             (72) 

Solution is thus determined by equations (59)-(62) 

and (70)-(72). Equation (59) gives the 

streamfunction of the flow as a function of 𝑥 and 𝑦. 

The tangential velocity component is given by the 

linear function of 𝑥 shown in equation (60) and the 

normal velocity component is given by the linear 

function of 𝑦, shown in equation (61). This flow is 

irrotational with a zero vorticity given by equation 

(61). 

The pressure in (70) remains bounded when 𝐴 >

0 and 𝑎𝐴 ≠
1

2
, with  

lim
𝑥→∞
𝑦→∞

𝑃 =
𝐴

𝑏
                                                               

(73) 

 

4 Conclusion 
 

In this work, we considered the two-dimensional 

flow of a fluid with pressure-dependent viscosity 

through a porous medium. We obtained a 

Riabouchinsky-type solution in which the 

streamfunction was specified. The forms of the 

streamfunction were chosen in such a way that the 

vorticity of the flow vanishes. The flow obtained is 

thus one in which a fluid with pressure-dependent 

viscosity is irrotational. 
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