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Abstract: - The Navier-Stokes equations are derived in the coordinate system rotating around the vertical axis.
As a starting point the corresponding differential equations are used in the Cartesian coordinates for inviscid
liquid with account of possible compressibility and effect of the mass forces (gravity and other ones, e.g.
electromagnetic). The transformation of the coordinates is performed and then the Navier-Stokes equations are
derived. The obtained equations are analyzed for a number of physical situations.
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1 Statement of the Problem

1.1 The Rotating Coordinate System

The first Cartesian coordinate system X, X,, X, with
the vertical axis xs is immovable, the other
coordinate system y,,Y,,Y, is rotating around the
vertical axis, with the rotation speed @ as shown in

Fig. 1:
_h
[_/ *
,/ y2
X1 yl

Fig. 1 Cartesian immovable and rotating around
the vertical axis coordinate systems
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The rotating coordinate system can be done with the
vertical axis coinciding with xs or shifted from the

central axis (X, = X, = 0) on some distance Ro.

The peculiarities and dynamics of the flows in
the inertial rotating coordinate system are analyzed
in the present paper. Different vortex flows and
particle motions, vortices and rotating flows have
always wondered and sometimes scared people.
Examples of the swirling flows at all scales in
nature are: the spiral galaxies, the atmospheric
hurricanes, sea and river vortices, and even stirring
tea in a teacup (see for example Figs 2-4) [1-3]:

Fig. 2 Spiral Galaxy in Ursa Major M101
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Photo: NOAA

Fig. 3 Hurricane Rita at its peak in the Gulf of
Mexico in September 2005

Fig. 4 Giant vortex in southern US lake

Interesting that all in Figs 2-4 examples are with
counter clockwise rotations.

Intensive rotational movement and mixing are
fascinating phenomena and may be very effective in
a number of engineering and technological
applications [4-11]. Many theoretical aspects have
been studied for the diverse rotational flows [12-19].
Nevertheless, the  problem  still  remains
insufficiently studied for many theoretical, as well
as practical applications.

1.2 Basic Navier-Stokes Equations

As the outgoing differential equations the following
Navier-Stokes equation array for the inviscid liquid
is taken:

2 + div(pV) = 0, (1)
2 pV+ (V- V)pV = —VP.

The momentum equation can be written in more
general form, accounting the available mass forces:

2 pV+ (V- V)pV = —VP + pg + pf + pvAV. (2)
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Here p is density of liquid, P- its pressure, t- time,
v- kinematic viscosity coefficient, V = {V;,V,,V3},
f={112f} 9 =1{91,92 93} vectors of the
velocity, volumetric mass forces and gravity,
respectively. And V, A are the vector gradient and
Laplace operator.

Many natural and technical systems deal with the
fluid flows in the situation when all coordinate
system rotates: river flow on earth rotating itself and
around the sun, the flow of liquids in rotating parts
of a car, etc. In some cases rotation is very intensive
and affects the fluid flow in the rotation system a
lot. Therefore, this paper aims to derive the Navier-
Stokes equation array and analyze it in the rotating
coordinate system. The focus is on the peculiarities
appearing in a flow due to rotation of the system.

1.3 The Rotating Coordinates

The rotating coordinates y,,Y,,Y, are expressed
through the outgoing immovable coordinates
X, X,, X, as follows

y1 = cos(wt)x; — sin(wt)x,,
Yy = sin(wt)x; + cos(wt)xy, 3)

Y3 = X3.
This rotation in the plane (X, X, ) with the constant
speed of rotation @ .

2 Transformation of the Coordinates
and Derivatives

2.1 Partial Spatial Derivatives of Coordinates
The derivatives by the spatial coordinates are
transformed from the immovable Cartesian
coordinate system to the rotational one as follows

aQ aQ . aQ
= cos(wt) — + sin(wt) —,
(wt) 7 (wt) 7~

0x;
aQ . aQ aQ
— = —sin(wt) — + cos(wt) —, 4
= (08) g+ cos(@D 32, (4)
%Q _ 99
0x3 N dys’

According to the equations (3) and (4),
transformation of the coordinates and spatial
derivatives depend on time and rotation speed. Only
the vertical coordinate remains the same.
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2.2 Transformation of Velocity Components
The wvelocity components in the outgoing
immovable Cartesian coordinates can be presented
as follows

_an_a :
V= vl dt( cos(wt)y; + sin(wt)y,),
d d .
V, = f = (—sin(wt)y,; + cos(wt)y,),
_ Gx3 _ dys
Vs = ac ~ dc’
Or
Vi = —w(sin(wt)y; — cos(wt)y,) + cos(wt)y; +
sin(wt)ys,
V, = —w(cos(wt)y; + sin(wt)y,) — sin(wt)y; +
cos(wt)y,,
V3 = ys, )

Yir¥ar ¥s assign the

where the dots over coordinates
derivatives by time.

For the velocity components in rotational
coordinate system the following assignments are

taken:
Uiy = Y1, Uz =Y,, Uz =s.
Thus, from (5) yields
V, = w(—sin(wt)y; + cos(wt)y,) + cos(wt)U; +

sin(wt)U,,
V, = —w(cos(wt)y; + sin(wt)y,) — sin(wt)U; +
cos(wt)U,,
V3 = Us. (6)

2.3 Transformation of Derivatives of the
Velocity Components

Derivatives from the velocity components are

transformed in the floowing way:

d
—V; = —w?(cos(wt)y, + sin(wt)y,)

ot
+2w(—sin(wt)y; + cos(wt)y,) + cos(wt)y; +
sin(wt)y5,
0

&Vz = —w?(—sin(wt)y, + cos(wt)y,)
— 2w(cos(wt)y; + sin(w - t)y,)

—sin(w - t)y; + cos(w - t)y,,

()

The second order derivatives by time are assigned
by two dots over the corresponding value.

a .
§V3 = Y3
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The expressions (7) with account of the above
are the following:

0
%Vl = —w?(cos(wt)y, + sin(wt)y,)

+2w(—sin(wt)U; + cos(wt)U,) + cos(wt)U; +
sin(wt)U,,
d
aVZ = —w?(—sin(wt)y, + cos(wt)y,)
— 2w(cos(wt)U; + sin(wt)U,)
—sin(wt)U; + cos(wt)U,,
) .
EV3 = U3. (8)

And then

0
5. PV = —w?p(cos(wt)y; + sin(wt)y,)
+ 2wp(—sin(wt)U; + cos(wt)U,)

+p(cos(a)t)Ul + sin(wt)Uz) +
+(w(=sin(wt)y; + cos(wt)y,) + cos(wt)U; +
sin(wt)U,)p,

0
o (pV2) = —w?p(=sin(wt)y, + cos(wt)yz)
— 2wp(cos(wt)U; + sin(wt)U,)
+p(—sin(wt)U; + cos(wt)U,) +

+(—w(+cos(wt)y; + sin(wt)y,) — sin(wt)U; +
cos(wt)Uz)p,

a . .
E(PVQ = pU; + Usp, 9)

where are:

F) F) a a F)

a(PV1)=PaV1+V1EP, E(PV2)=P§V2+
a a F) Fl

VagePio (0V3) = p=- V3 + Vs —p.

3 Derivation of the Navier-Stokes
Equations in Rotating Coordinate
System

3.1 The Spatial and Temporal Derivatives in
the Rotational Coordinate System

According to the equations (4) the

derivatives can be written as follows

a(pVy)
dx,

spatial

= (w(—sin(wt)y; + cos(wt)y,)

+ cos(wt)U; + sin(wt)U,) -
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(cos(wt) i + sin(wt) i) p+
a9y,

+p (cos(wt) F + sin(wt) a—yz) *(cos(wt)U, +

sin(wt)U,),

a(pVy)

o, = (w(—sin(wt)y, + cos(wt)y,)

+ cos(wt)U; + sin(wt)U,) -

. ] 0
. (—sm(wt) P + cos(wt) a—yz) p+

+p [(—sin(wt) aiyl + cos(wt) aiyz) - (cos(wt)U; +

sin(wt)U,) + w],

alpVy) _ 9(pVy),
o) 20, (10)
d(pV.
1

— sin(wt)U; + cos(wt)U,) -

] , 9
. (cos(a)t) I + sin(wt) a—yz) o+

+p [(cos(wt) aiyl + sin(wt) aiy)  (—sin(wt)U; +

cos(wt)U,) — w],

a(pV;)
dx,

= (—w(cos(wt)y, + sin(wt)y,)

— sin(wt)U; + cos(wt)U,) -

0 0
( sm(a)t) — + cos(wt) —) p
0y, 9y,

+p (—sin(wt) o cos(wt) aiyz) :
(—=sin(wt)U; + cos(wt)U,),

a(pV,) — a(pV,)
0x3 dys ’

9(pVs3)

ap . ap
=V (cos wt) — + sin(wt —)+
oxs 3 ( )ay1 ( )ayz

P (cos(wt) Z—Zj + sin(wt) Z—Zz),

20 _y, ( 2 in(ut) 22)
oxs =V cos(a)t)ay2 sm(a)t)ay1 +

cos(wt) — — sin(wt) —),
p (cos(wt) 32 = sin(wt) 32
a(pVs3) — a(pVs3).
0x3 0ys ’
apP

aopP , apP
— = cos(wt) — + sin(wt) —,
0xq ( ) dy1 ( ) 0y,
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0x2
o _ op

Ox3 N dys’

As it is observed from the equations (10),
remarkably for incompressible liquid, the flow
gradient by the first coordinate x;, d(pV;)/0x4,
transforms to zero in the rotational coordinate
system, while by the second coordinate x, it is just
equal to wp. For the second velocity component,
gradient d(pV,)/0x, is, respectively -wp and 0 by
the coordinates x4, x;.

The vertical velocity component remains non-
zero, it does not depend on rotation of the
coordinate system. And the vertical gradients for all
velocity components are not transformed in the new
coordinate system.

3.2 Transformation of the Navier-Stokes
Equations

Now let us write the equation array (1), (2) in the

following coordinate form:

dp | (V1) |, A(pV2) | A(pVs) _
6t+ 0x4 + dx; + 9%s 0
(pvl) + Vl a(PV1) +V, a(PV1) +V, a((;;Vl) _
3
Fy + Py + pf1 :
V) +V “’Vz) 1, 200y 20
X2 Ox3
PR + pgz + prl
2 (pVs) + 1, 208 4y, 20y, 0)
X2 3

- a—x3 + pgs +pfs,
and substitute the obtained expressions (6), (8-10):

9p , 9(pW1) | A(pWp) | 3(pWs) _
at 9y, + 0y> + dy3 =0
d d(pWy) a(pWy)
Py (pWy) + Wy P + W, 7,
a(pWy)
a + W; dys
= —% + p(cos(wt)g, — sin(wt)g,) +
1
p(cos(wt)fi — sin(wt)f,), (11)
0 a(pWs) a(pWs)
7t (W) + W, s + W, 37,
a(pW,)
+ W; e
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_;TP + p(sin(wt)g, + cos(wt)g,) +
2

p(sin(wt)fi + cos(wt)f2),
6(pW3) a(PW3) (pWs) —

—(PW3) + W 3y,

+ W,

+ W;
+ pgs + Pf3;

where are: W, = U,
Us.

Thus, in the new variables, the system of the
Navier-Stokes equations has similar to the above
(1), (2 form represented in the immovable
coordinate system. Therefore, in the appropriate
variables the equations remain the same but the right
parts contain the volumetric forces written in the
new coordinate system (rotating one).

The effect of rotation is hidden in the additive
replace of the variable similar to [20, p.60], when
W =U + [wxr].

— WYy, WZ = UZ + wy, W3 =

3.3 Analysis of the Navier-Stokes Equations

3.3.1 Equations for the incompressible liquid
Despite the cumbersome view of the general case
equations (11), they become much simpler for a
number of specific conditions. For example, for
incompressible liquid it yields:

aw | awy | oW, _
0y, 0y, 0y3 '
oW, oW, oW, oW,
_+W1_+W2_+ 37 =
at Iy, 0y dy3

=100, cos(wt)g, — sin(wt)g, +
p oy
cos(wt)f; — sin(wt)f3, (12)
6W2+W aWZ-I—W aWZ_I_W aWZ —
ot 1123/1 20y, Soy;
= ——— 4+ sin(wt)g; + cos(wt)g, +
p 0y,
sin(wt)f; + cos(wt)f,

ows ows ows ows _ _10P
e TWiG,, TWag +Wag =
93+ f3
or in the normal rotating coordinates:
6U1 6U2 6U3
Uy 92y T8 1
0y 0y, y3 0’ ( 3)
6U1 oU, oU, U,
U o AUy Uy =
= w(y25 _1 -1 ayl) + w(2U; + wy;) — —g +
cos(a)t)g1 —sin(wt)g, + cos(wt)f; —
sin(wt) f,
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U, ‘U ou, ‘U au, LU au,

ot 1a ” 25y, 3y,

U,

=0, 5- 9y,

sin(wt)g; + cos(wt)g, + sin(wt)f; +
cos(wt) fy,

1 9P
1ay ) + w(wy, — 2U;) _;ﬁ‘*‘

The first peculiarity of the equation array (13) is
absence of the stationary solution if any of the
gravitational components g;, g, or any other mass
force fi, f> is acting in the plane y1y,. Only vertical
components of these forces do not cause non-
stationary flow regimes. The situation is very
unusual: any (even constant!) external force in this
plane makes the fluid flow regime principally non-
stationary.

Now let us consider the system (13) without
external forces and take the sum of the three
momentum equations, which results in

0y, + 0y> 0y3 =0’ (14)
oUs , , 0Us ~, OUs U
at Loy, 2 0y, 3 6y3 B

AU AU
=0 (1252 3 52) + 02U — 20, + (1 +

¥2)) =~ divP,

ou,  oU,  oU,  oU,
_+U1_+ U2_+ U3_=
atau a%?/%] 0y 973 1 9P
= w()’z -y ayz) + w(wy, —2U;) — FYIX
U, au3 au; oU; au;
?‘l‘ U1 +U2 +U36_yz_w(y26y1
% _1lop
Y13 pays’

Whel'e US = Ul + U2 + U3.
In case of Ug = const from the second equation
(14) follows

divP = wp(2(U; — Uy + o(y1 +¥2)), (19)

so that pressure in a flow is totally determined by
the centrifugal and Coriolis forces independent of
the value Us. Only the position of the point in a flow
(v, + y,) and the velocity difference U, — U; (not
their absolute values!) determine the pressure.

3.3.2 Equations for the compressible liquid

In more general case, the equations (11) for the flow
of compressible liquid yield:
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) Uy oU,  oU
2+ (—1+ 2+—3)+U1—+U2—+
at ay, 9y, 0y, 9y,
_ 9 _ . 9P
U3 dys (yZ ay 1ay,””
2 F) F) 2
P Uy ~+U o U1 +U2 U1 + Uy Ul) = (wy, —

Ul)——(a)yz—U —p+(a)y2—U )(U +

a1
wy,) p+(wy2—U)U36 + wp(y Y23 v

aUl) + wpRUy + wy;) — -+ p(COS(wt)91

sin(wt)g, + cos(wt)f1 — sin(wt)f,),

(16)
U, U U, ‘U ou, Y ou,
oty Ty, ) "

a
=~ (U + 0y 2+ (0 = UV + 0y1) 75 -
a
(Uz + wyl) 22 —(Uy + @y)Us a—”

wp(y2 3 g —N 5) twp(wy, —2U01) — 5~ +

p(sin(wt)g, + cos(wt)g, + Sln(wt)fl
cos(wt)fr),

p(

a a
(@yz — U)Us g—(uz + wyl)ug—” —Us” 5o+

au au
wp (2 ﬁ ~—N ayg) ~ + p(g3 + f3)

As shows analysis of the obtalned equation array
(16), in contrast to (13), for the compressible liquid,
the stationary flow regime is impossible even in
absence of any external mass forces because of the

] . .
term a—’t’ present in all 3 momentum equations,

except very specific case when this term is zero and
there is only the spatial density distribution.

The flow regime (15) is unique for the
incompressible flow and is not available for
compressible one as clearly seen from the (16).

The first equation of the system (16) contains the
“density vortex” to the right, which shows that the
higher is rotation speed, the more intensive is
density variation by time and space. This, in turn,
may cause further growing of the “density vortex”,
and so on. By the high rotation speed despite the

. ap d
small coordinate values the term w(y, 5 - a;)

can be big due to substantial density gradients,
which may grow with time creating the singularity
point in the centre of rotation.

If we present the first equation in the form

ap (5U1.6U2.3U3)+U 9p , ;. Op . Op

+ +Uyz UL
— 0t "\dy; 9y; 6y3 16y1 29y, " %dys (17)

(J/Z EI —J/1ay2)
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we can consider it as the equation for the vortex
formation in the compressible fluid flow due to the
density spatial gradients. What is very interesting
from this correlation that even in case of zero
velocities and zero velocity gradients, the vortex

. . . . d
formation can start just due to density gradients: a—':,

o

33’1,a

Y1 ﬁ determine the direction of the rotation.
2

0 - op 90 _
PR The signs of the terms o and y, ™

3.4 Vortex flow creation and evolution

3.4.1 Conditions for vortex creation
It is interesting to underline that zero value of the

term (y, aa—ypl - :—52) in the equation (17) excludes

influence of the rotation in the first equation (16),
while any small values of this term in (17) may
create the reason for an abrupt grow of the rotation
(vortex) in a compressible fluid, which may start a
vortex flow in the immovable liquid or create a
vortex in the fluid flow.

For example, let us consider the vortex birth in a
volume of liquid or gas being initially in the rest.
From (17) follows

dp
w=—7% (18)

(3&@‘3’163,2)

which shows that the vortex cannot be created in
case of symmetrical density variation around some
point. Naturally such conditions may happen due to
abrupt local heating causing the remarkable
variation of the liquid or gas density in time and
space e.g. from a solar radiation concentrated in
local region.

Then assuming that gravitation force is acting in
the vertical direction and substituting (18) into (16)
yields:
ap aUu, U,
E-I_ (6_yl+6_yz+6y3>+U10_+U20

] ]
U3a_p= w(yZa__ 1£ )

6U1 6U1 6U1 6U1

Ul);—wz—u )”—"+(wy2—u (W, +

a a oUy
a)yl)a—p+(a)y2 U)U3a +(UP( Y23 :

au
Y1 a_l) + wp2Uz + wyr) — -

(19)
U,

Jt

( +U0U+U6U+U6U)
p 163’1 263’2 363’3
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8 s . . . .
= —(Uy + wy1)5 _P + (wy, — U)(U, + w}’1 _P - 3.4.2 Numerical simulation of the vortex creation
Y1 The numerical solution of the boundary problem
(U2 + wy1)2 ——(U2 + wyl)U3 + (20)-(22) is presented below in Figs 5-10:
0p(y2 52 =31 T + wp(wy; - 2U1) - B . |
au au au au A
p(a_:‘l‘Ul 3+U2 3+U30_yz) 3_+ :
2 /
(wy, — U1)U3 —(Uz + w}’1)U3 - U;? a_;; + e
U3 _, 0Us _a_P ) ‘t
p(yz ay Vi3, tpgs-
where the initial vortex birth is supposed to the ‘
stated initial density gradients according to the ° i
equation (18). Then the equation array (19) is solved : | 1 | 4
for the flow field and density distribution. For the x
gas flow it is added the equation of state to close the S o S — — — E—
system (19), for example: P = pRT, R=286 T~
JI(kg*K)- the universal gas constant for the air. : \\
The condition (18) can be considered as the . A .
origin for the vortex flow formation by different
density variation at the initial time. And then solve s
the equation array (19) under simplification that at .
the initial moment the vortex formation is starting as
the two-dimensional process. The equations (19)
yield: .
ap au, = au, ap o ’ RV ’ s
atP (6_}/1 + a) +U; ay, +U; ay, Fig. 5 Velocity field us by y1 y2 (X,Y) at t=1
9 _. 2
0,5, Y15, -
au, U, Uy _ B_P _ .
(?‘i'Ulﬁ-l-Uz 3, —) = ((A) U ) {‘I}
(wyz—U )2 S+ (wy, =U)U_+ 2+
au au .
wy,) 7= oy, T0P25—V15) +wp(2Us + ® |
ap S I
wy1 oy (20) \
U j—
p(6t+ 15y, T V25, J N A |
a ! | —_ R ——t
=—(U, + wJ’1) T+ (wy2 — Ul)(Uz + w}’l)_p - o 2 e :
2 0p [ aU, o8 ) /'\ )
U, + a’}’1) + wp (¥ 2 ay Yig, )+ A
wP(wJ’Z —2U;) —5— ’ / /,"’/
/
The boundary problem (18), (20) was solved s / i
numerically in the region circle of the given radius a g /‘ ,
with the following initial and boundary conditions: oL/ \ /
0. 2 4p0 28— gp1 20— /
t=0, P dpO, ayy dpl, 3y; dp2, ) \/
_ _ . ___ dp0 . /
Ui_O'w_‘”O_a(am—de)’ 2D
v, =y, =a,U =U, =0. (22) Fig. 6 Velocity field uz by y1 y- (X,Y) at t=1
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Fig. 7 Velocity field u; by y1 y» (X,Y) at t=10
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Fig. 8 Velocity field uz by y1 y» (X,Y) at t=10
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Fig. 10 Velocity field u, by y1 y2 (X,Y) at t=60
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It was revealed high sensitivity to the fidelity of the
initial data. A few results are presented in Figs 5, 6
for the initial moment t=1.

o6

-

/

0. 2 4. 6. 8 10.

Fig. 11 Velocity field u1 by y1 y» (X,Y) at t=600

i
17

u2
5 o
— |

VA

\/

u2
- o

|| I I —
/

0. 2 4 8. 8 10.
o2

Fig. 12 Velocity field u. by y1 y2 (X,Y) at t=600
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The density and pressure fields do not change
during this small time interval from zero to t=1, as
well as up to t=60, as clearly shown from the data
presented in Figs 7, 8 and Figs 9, 10 for the intervals
t=10 and t=60, respectively. The velocities are
growing since starting point but at t=60 they are
decreasing. Then flow is gradually decreasing as
shown in Figs 11, 12 for the t=600 and Figs 13, 14
for the t=3600.

o7

0.

ﬂ
A N

ul
®
___——_
/
—

ul
w
I
\

HTIN

-7.

0 2 4. 6. 8. 10.
o2

v
Fig. 13 Velocity field u; by y1 y» (X,Y) at t=3600

e6

u2
w s
|
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u2

Fig. 14 Velocity field u2 by y1 y2 (X,Y) at t=3600

Remarkably during all process the density and
pressure are not prone to any changes.

4 Conclusion

Mathematical model obtained allowed studying the
rotational flows. The inertial rotational coordinate
system was applied and the Navier-Stokes equations
were analyzed. The computer simulation for the air
rotational flow created by the initial density
gradients has been done using the gas equation of
state by the temperature 300K. It revealed starting
the slow flow in a circle region of 10 sm radius
under the initial density gradients by time 0.01K/s,
and 0.25K/m, 0.05K/m by coordinates, which is
growing up to the flow velocities about 0.25-0.35
mm/s and then is gradually fading after t=600 s.
This is the first attempts to reveal the features of the
rotational flows using the inertial coordinates
systems, which will be continued in the future study.
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