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Abstract:- An axisymmetric problem of a microelongated thermoelastic medium by considering an infinite 
circular plate under the influence of thermomechanical sources has been solved by employing the eigenvalue 
approach. The solution in the form of the components of displacement, stresses and temperature distribution is 
obtained in the transformed domain by using the Laplace and the Hankel transforms. A numerical inversion 
technique has been used to get the results in the physical domain, numerically, for a particular model. The 
results are presented graphically to show the effect of microelongation on various field components. The 
results are discussed graphically. 
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1 Introduction 
The theories for the microcontinuum or the 
micromorphic continuum fields were introduced 
by A. C. Eringen and these differ from classical 
(linear and non-linear) field theories by the fact 
that each material particle is endowed with 
additional degrees of freedom. That means, in 
contrast to classical continuum mechanics (rational 
mechanics), where the motion (macromotion) of a 
material particle is fully described by a vector 
function called deformation function, 
micromorphic material particles undergo an 
additional micromotion, corresponding to the 
rotation and deformation of the material particle at 
the microscale. In the most general case of 
micromorphic continua, there are nine additional 
degrees of freedom (three for microrotation and 
six for microdeformation).  In principle, 
micromorphic continua are almost universal but, 
due to its complexity, the practical usefulness of 

this theory is inversely proportional to its 
generality.  

A special case is that of microstretch continua. 
Here, the isotropic expansion or contraction of the 
material particle is permitted in addition to 
rotation. Shearing motions are not allowed in 
microstretch continua. That means the particles of 
microstretch materials have seven degrees of 
freedom, three for displacements, three for 
microrotations and one for microstretch. 
Microstretch theory adequately model the bubbly 
liquids. A more special is the theory of micropolar 
continua, in which only the microrotations of 
material particles, described by three degrees of 
freedom, are allowed in micropolar continua in 
addition to the motion at macroscale. The theory 
of microstretch elastic bodies or Micropolar theory 
of elasticity with stretch is a generalization of the 
micropolar theory of elasticity for which the 
theory was given by Eringen [1]. Eringen [2] also 
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developed the theory of thermomicrostretch elastic 
solids. 

A microelongated elastic solid possesses four 
degrees of freedom, three for translation and one 
for microelongation. In microelongation theory, 
the material particles can perform volumetric 
microelongation in addition to classical 
deformation of the medium. The material particles 
of such medium have a tendency to contract and 
stretch independently of their translations. 
Composite materials reinforced with chopped 
elastic fibers, solid-liquid crystals, porous media 
with pores filled with nonviscous fluid or gas can 
be categorized as a microelongated medium.  

Kiris and Inan [3] found the Eshelby tensors for 
a spherical inclusion in a microelongated elastic 
field and they introduced a special micromorphic 
model to describe the damaged material that 
defines the damage as the deformation and the 
growth of microvoids and microcracks occurred in 
the material at the microstructural level. Shaw and 
Mukhopadhyay [4] investigated a functionally 
graded isotropic unbounded microelongated solid 
under periodically varying heat sources using 
Laplace-Fourier transform techniques. Shaw and 
Mukhopadhyay [5] investigated the influence of 
moving heat source in a thermoelastic 
microelongated solid in the context of the 
generalized theory of heat conduction. Ailawalia, 
Sachdeva and Pathania [6] studied a two 
dimensional deformation problem in a 
thermoelastic microelongated medium with 
internal heat source.  

In this paper, a two dimensional problem of an 
infinite microelongated thermoelastic circular plate 
is solved by using the eigenvalue approach 
following the Laplace and Hankel transforms. 
Using the numerical inversion technique of 
integral transforms, the results are obtained in the 
physical domain, numerically for a particular 
model. The effect of microelongation on 
displacements, temperature distribution, normal 
stress and tangential stress are presented 
graphically to discuss the results and to make the 
conclusions. 

 
 

2 Basic Equations 
Following Eringen [7], Lord-Shulman [8] and 
Green-Lindsay [9], the basic equations and the 
constitutive relations for a linear microelongated 
thermoelastic solid are given as 
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where ݑሬԦ is the displacement vector and ߰ is the 
microelongation scalar; ߣ, ,ߤ ,ߙ ,ߣ ,ଵߣ ݆,݉ are 
the material constants, ߩ is the density, ܭଵ

∗ is the 
coefficient of thermal conductivity, ߥ ൌ
ሺ3ߣ   ௧ is the coefficient of linearߙ ,௧ߙሻߤ2
thermal expansion,	 ܶ is the change in temperature 
of the medium at any time, ܥ∗ is the specific heat 
at constant strain; ߬	ܽ݊݀	߬ଵ are the thermal 
relaxation times; ݐ is the stress tensor; ߜ is the 
kroneckor delta and  is the Laplacian operator. 
For L-S theory;  ߬ଵ ൌ 0, ߬  0, and ߟ ൌ 1. 
For G-L theory; ߬ ଵ  ߬  0, and ߟ ൌ 0. 

 
 

3 Formulation of the Problem 
We consider an infinite homogeneous isotropic 
microelongated thermoelastic circular plate having 
thickness 2݀. A transient axisymmetric 
temperature field and an instantaneous normal ring 
force are acted upon the plate. Also, the plate is 
considered as thermally insulated. The cylindrical 
polar coordinates ሺ,ݎ			,ߠ			ݖሻ having origin in the 
middle surface of the plate and z-axis along the 
normal to the plate, i.e., along the thickness of the 
plate are taken. The problem considered is a two 
dimensional axisymmetric problem with z-axis as 
the axis of symmetry. The plane ሺݎ,  ሻ is taken asݖ
the plane of incidence and all the components 
depend upon ݎ,  only. The initial ݐ and ݖ
temperature in the thick plate is taken as a constant 
temperature T. 
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4 Solution of the Problem 
For the two dimensional axisymmetric problem, 
we take 
ሬԦݑ ൌ ሺݑ,			0,			ݑ௭ሻ.																																										ሺ5ሻ 

Equations (1)-(3) with the use of (5) take the form  

ሺߣ  ሻߤ
߲
ݎ߲
൬
ݑ߲
ݎ߲


ݑ
ݎ

௭ݑ߲
ݖ߲

൰ 

 

						ߤ ቆ
߲ଶݑ
ଶݎ߲


1
ݎ
ݑ߲
ݎ߲


߲ଶݑ
ଶݖ߲

െ
ݑ
ଶݎ
ቇ 

 

ߣ
߲߰
ݎ߲

െ ߥ
߲
ݎ߲
൬1  ߬ଵ

߲
ݐ߲
൰ ܶ 

																					ൌ ߩ
߲ଶݑ
ଶݐ߲

,																								ሺ6ሻ			 

 

			ሺߣ  ሻߤ
߲
ݖ߲
൬
ݑ߲
ݎ߲


ݑ
ݎ

௭ݑ߲
ݖ߲

൰

 ߤ ቆ
߲ଶݑ௭
ଶݎ߲


1
ݎ
௭ݑ߲
ݎ߲


߲ଶݑ௭
ଶݖ߲

ቇ	 

																							ߣ
߲߰
ݖ߲

െ ߥ
߲
ݖ߲
൬1  ߬ଵ

߲
ݐ߲
൰ ܶ					 

																							ൌ ߩ
߲ଶݑ௭
ଶݐ߲

,																								ሺ7ሻ 

 

ߙ			 ቆ
߲ଶ߰
ଶݎ߲


1
ݎ
߲߰
ݎ߲


߲ଶ߰
ଶݖ߲

ቇ

െ ߣ ൬
ݑ߲
ݎ߲


ݑ
ݎ

௭ݑ߲
ݖ߲

൰	 

																							െߣଵ߰	  ݉ ൬1  ߬ଵ
߲
ݐ߲
൰ ܶ

ൌ
1
2
݆ߩ

߲ଶ߰
ଶݐ߲

,														ሺ8ሻ 

 

ଵܭ
∗ ቆ
߲ଶܶ
ଶݎ߲


1
ݎ
߲ܶ
ݎ߲


߲ଶܶ
ଶݖ߲

ቇ	 

					ൌ ∗ܥߩ ቆ
߲ܶ
ݐ߲

 ߬
߲ଶܶ
ଶݐ߲

ቇ 

									νT ቆ
߲
ݐ߲
 ߬ߟ

߲ଶ

ଶݐ߲
ቇ ൬
ݑ߲
ݎ߲


ݑ
ݎ

௭ݑ߲
ݖ߲

൰ 

										mT ቆ
߲
ݐ߲
 ߬ߟ

߲ଶ

ଶݐ߲
ቇ߰.					ሺ9ሻ 

The non dimensional quantities are introduced as 
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Equations (6)-(9), with the aid of dimensionless 
quantities (10) and after suppressing the primes, 
yield 
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Now, we define the Laplace transform with respect 
to time variable ‘ݐ’ with transformed variable ‘ݏ’ 
as 
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and the Hankel transform of order ݊ with respect 
to the variable ‘ݎ’ with transformed variable ‘ߦ’ as 
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Applying the Laplace and then the Hankel 
transforms defined by (15) and (16) on the set of 
equations (11)-(14), we obtain 
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The system of equations (17)-(20) may be written 
as 
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The solution of the equation (21) is assumed as 

ܹሺߦ, ,ݖ ሻݏ ൌ ܺሺߦ,  ሺ22ሻ																											ሻ݁௭,ݏ

so that, we have 

,ߦሺܣ ,ߦሻܹሺݏ ,ݖ ሻݏ ൌ ,ߦሺܹݍ ,ݖ  									,ሻݏ

which leads to the eigenvalue problem, and the 
characteristic equation of the problem is obtained 
as  

ܣ| െ |ܫݍ ൌ 0,																						 

which on simplification, by using row and column 
operations, yields 
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The eigenvalues are the roots of the equation (23) 
and the roots are say ݍ
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eigenvector ܺሺߦ,  ሻ corresponding to theݏ
eigenvalue ݍ can be obtained by solving the 
system of equations 

ሾܣ െ ,ߦሿܺሺܫݍ ሻݏ ൌ 0.	 

Thus, the eigenvectors ܺሺߦ,  ሻ corresponding toݏ
different eigenvalues േݍ	ሺ1, 2, 3, 4ሻ are obtained 
as 

ܺሺߦ, ሻݏ ൌ 	 
ܺଵሺߦ, ሻݏ

ܺଶሺߦ, ሻݏ
൨,						 

 

where 

for  ൌ ሺ݅		 ൌ 1, 2, 3, 4ሻ, we have 

ܺଵሺߦ, ሻݏ ൌ ൦

ܽݍ
ܾ
݀
݁

൪ , ܺଶሺߦ, ሻݏ ൌ

ۏ
ێ
ێ
ݍܽۍ

ଶ

ܾݍ
݀ݍ
݁ݍ ے

ۑ
ۑ
ې
,				 

for  ൌ െ		ሺ݅ ൌ 1, 2, 3, 4ሻ, we have 

ܺଵሺߦ, ሻݏ ൌ ൦

െܽݍ
ܾ
݀
݁

൪,			 ܺଶሺߦ, ሻݏ ൌ

ۏ
ێ
ێ
ۍ ܽݍ

ଶ

െܾݍ
െ݀ݍ
െ݁ݍ ے

ۑ
ۑ
ې
,	 

  											݆ ൌ ݅  4, 

in which     

ܽ ൌ
ߦ
ଶߜ
ሾݎଵ
ଶሼ

ଶߜଵ
∗ െ ሺ1 െ  ଶሽݎଶሻߜ

												߳ݎଵݎସሼݎଶ െ ሺ1 െ ଵߜଶߥଶሻ̅ߜ
∗  ଵߜߥ2̅

∗ሽሿ, 

ܾ ൌ
1
ଶߜ
ሾݎଵ
ଶሺݎଶݎଷ െ 

ଶߜଵ
 ଶሻߦ∗

											߳ݎଵݎସሺߦଶݎଶ  ଵߜଶߥ̅
ଷݎ	∗ െ ଵߜ2

 ,ଶሻሿߦߥ̅∗

݀ ൌ ଵߜ
∗ሾሺݎଵ  ܽߦସሻሺݎߥ̅߳	  ܾሻݍሿ 

																																										/ሺെݎଵݎଶ െ ଵߜଶߥ̅߳
 ,ସሻݎ∗

݁ ൌ ሾ߳ሺݏ  ଶݎଵݎଶሻሼሺݏ߬ߟ  ଵߜଶߥ̅߳
ସሻݎ∗

െ ଵߜߥ̅
∗ሺݎଵ  ܽߦସሻሽሿሺݎߥ̅߳  ܾሻ

/ሼݎଵሺെݎଵݎଶ െ ଵߜଶߥ̅߳
 ,ସሻሽݎ∗

ଵݎ ൌ ൫ߦଶ  ሺݏ  ߬ݏଶሻ െ ݍ
ଶ൯,				 

ଶݎ ൌ ൫ߦଶ  ଶߜ
ଶݏ∗  ଵߜଵ

∗ െ ݍ
ଶ൯, 

ଷݎ ൌ ൫ߦଶ  ଶݏ െ ݍ
ଶߜଶ൯,			 

ସݎ ൌ ሺ1  ߬ଵݏሻሺݏ  ,ଶሻݏ߬ߟ
ሺ݅ ൌ 1, 2, 3, 4, 5ሻ. 

Thus, the solution of (21) is obtained as 

ܹሺߦ, ,ݖ ሻݏ ൌ ܰ

ସ

ୀଵ

ܺሺߦ, ሻݏ coshሺݍݖሻ,			ሺ24ሻ 

where ଵܰ, ଶܰ, ଷܰ and ସܰ are arbitrary constants. 
Now, using (5) in equations (4), the stress 
components for the two dimensional problem are 
obtained as 
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௭௭ݐ ൌ ሺߣ  ሻߤ2
௭ݑ߲
ݖ߲

 ߣ ൬
ݑ߲
ݎ߲


ݑ
ݎ
൰ 

																		െߥ ൬1  ߬ଵ
߲
ݐ߲
൰ ܶ  ,߰ߣ ሺ25ሻ 

௭ݐ ൌ ߤ
ݑ߲
ݖ߲

 ߤ
௭ݑ߲
ݎ߲

.																																			ሺ26ሻ 

Using the non dimensional quantities defined by 
(10) and applying the Laplace and then the Hankel 
transform defined by (15) and (16) on the 
equations (25)-(26), and then using (24), we get 

௭௭෦ݐ	 ൌ ଵܮ ଵܰ coshሺݍଵݖሻ  ଶܮ ଶܰ coshሺݍଶݖሻ 

										ܮଷ ଷܰ coshሺݍଷݖሻ  ସܮ ସܰ coshሺݍସݖሻ , ሺ27ሻ 

௭෦ݐ ൌ ଵܯ ଵܰ coshሺݍଵݖሻ  ଶܯ ଶܰ coshሺݍଶݖሻ 

									ܯଷ ଷܰ coshሺݍଷݖሻ  ସܯ ସܰ coshሺݍସݖሻ , ሺ28ሻ 

where 

ܮ					 ൌ ቈ
ݍܽߦߣ
ଵܿߩ

ଶ 
ߣ
ଵܿߩ

ଶ ݀ െ ሺ1  ߬ଵݏሻ݁

 ቆ
ߣ  ߤ2
ଵܿߩ

ଶ ቇ ܾݍ,									 

ܯ				 ൌ ቈെ
ܾߦߤ
ଵܿߩ

ଶ 
ݍܽߤ

ଶ

ଵܿߩ
ଶ ,									ሺ݅ ൌ 1, 2, 3, 4ሻ. 

 
 

5  Boundary Conditions 
The circular plate occupies the region defined by 
0  ݎ ൏ ∞ and െ݀  ݖ  ݀. The plate is acted 
upon by an instantaneous normal ring force and a 
transient axisymmetric temperature field 
dependent on the radial and axial directions of the 
cylindrical coordinate system. Also, the plate is 
thermally insulated. Therefore, the nondimensional 
boundary conditions at the surface ݖ ൌ േ݀ of the 
plate are taken as 
݀ܶ
ݖ݀

ൌ േ݃ܨሺݎ,  ሺ29ሻ																																					ሻ,ݖ

௭௭ݐ ൌ ሺܽߜሻݐሺߜ െ  ሺ30ሻ																																	ሻ,ݎ

௭ݐ ൌ 0,																																																							ሺ31ሻ 

݀߰
ݖ݀

ൌ 0,																																																						ሺ32ሻ 

where  ܨሺݎ, ሻݖ ൌ ,ଶ݁ିఠݖ ߱  ,ݎሺܨ ,0  ሻ is aݖ
function that increases in the axial direction 
symmetrically and falls off exponentially as one 

moves away from the centre of the plate along the 
radial direction. The constant temperature applied 
on the boundary is ݃. ߜሺെሻ is the Dirac delta 
function. 
Applying the Laplace and the Hankel transforms 
defined by (15) and (16) on the boundary 
conditions (29)-(32), we obtain 

					
݀ ෨ܶ

ݖ݀
ൌ േ݃

ଶ߱ݖ

ሺݖଶ  ߱ଶሻଷ ଶൗ
,																										ሺ33ሻ 

௭௭෦ݐ					 ൌ  ሺ34ሻ																																													ሻ,ܽߦሺܬܽ

௭෦ݐ					 ൌ 0,																																																									ሺ35ሻ 

				
݀ ෨߰

ݖ݀
ൌ 0.																																																									ሺ36ሻ 

Making use of (24) and (27)-(28) in the 
transformed form of boundary conditions (33)-
(36), we obtain  

						 ଵܵ ଵܰ  ܵଶ ଶܰ  ܵଷ ଷܰ  ܵସ ସܰ ൌ ܳ,							ሺ37ሻ 

						 ଵܶ ଵܰ  ଶܶ ଶܰ  ଷܶ ଷܰ  ସܶ ସܰ ൌ ܴ,							ሺ38ሻ 

						 ଵܷ ଵܰ  ܷଶ ଶܰ  ܷଷ ଷܰ  ܷସ ସܰ ൌ 0,					ሺ39ሻ 

						 ଵܸ ଵܰ  ଶܸ ଶܰ  ଷܸ ଷܰ  ସܸ ସܰ ൌ 0,								ሺ40ሻ 

where  

ܵ ൌ ݁ݍ coshሺݍ݀ሻ,								 ܶ ൌ ܮ coshሺݍ݀ሻ,			 

ܷ ൌ ܯ coshሺݍ݀ሻ,									 ܸ ൌ ݀ݍ coshሺݍ݀ሻ, 

ܳ ൌ േ݃
ଶ߱ݖ

ሺݖଶ  ߱ଶሻଷ ଶൗ
, ܴ ൌ  	,ሻܽߦሺܬܽ

																																									ሺ݅ ൌ 1, 2, 3, 4ሻ. 

After solving the system of equations ሺ37ሻ െ ሺ40ሻ, 
we obtain the values of ܰ 	ሺ݅ ൌ 1, 2, 3, 4ሻ as  

ܰ ൌ
Δ
Δ
,																																																									ሺ41ሻ 

where 

∆ൌ ተ

ଵܵ			ܵଶ			ܵଷ			ܵସ
ଵܶ			 ଶܶ			 ଷܶ			 ସܶ
ଵܷ			ܷଶ			ܷଷ			ܷସ
ଵܸ			 ଶܸ			 ଷܸ			 ସܸ

ተ, 

and ∆ሺ݅ ൌ 1, 2, 3, 4ሻ are obtained from  ∆ by 
replacing  ith column of ∆  with	|ܳ, ܴ, 0, 0|௧,  (′ݎݐ′ 

stands for transpose). 
Using the values of ܰ 	ሺ݅ ൌ 1, 2, 3, 4ሻ from ሺ41ሻ in 
the equations ሺ24ሻ and ሺ27ሻ െ ሺ28ሻ, we obtain the 
expressions of displacements, microelongation, 
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temperature distribution and stresses in the 
transformed domain as 
൫ݑ,			ݑ௭, 	෩߰ , ෨ܶ൯ 											

ൌ
1
Δ
ሺܽݍ,			ܾ,			݀,			݁ሻΔ coshሺݍݖሻ ,

ସ

ୀଵ

ሺ42ሻ 

ሺ	ݐ௭௭෦ ௭෦ሻݐ			, 																											

ൌ
1
Δ
ሺܮ,			ܯሻΔ coshሺݍݖሻ .

ସ

ୀଵ

																		ሺ43ሻ			 

The above expressions  ሺ42ሻ െ ሺ43ሻ provide the 
solution of the problem in the transformed form of 
components of displacement, microelongation, 
temperature distribution and stresses. 
 
 

6  Particular Case 
In case of absence of microelongation, that means 
the circular plate is of thermoelastic medium, then 
the boundary conditions for the problem become,  

		
݀ܶ
ݖ݀

ൌ േ݃ܨሺݎ,  																				,ሻݖ

௭௭ݐ			 ൌ ሺܽߜሻݐሺߜ െ  			,ሻݎ

௭ݐ			 ൌ 0.																																																					 

Accordingly, the expressions for displacements, 
temperature distribution and stresses are obtained 
from (42) and (43) as 

	൫ݑ, ,௭ݑ ෨ܶ൯ ൌ
1
Δ
ሺܽݍ,			ܾ,			݁ሻΔ coshሺݍݖሻ ,

ଷ

ୀଵ

			 

	ሺ	ݐ௭௭෦ ௭෦ሻݐ			, ൌ
1
Δ
ሺܮ,			ܯሻΔ coshሺݍݖሻ ,

ଷ

ୀଵ

				 

where 

		Δଵ ൌ ሺRSଷ െ QTଷሻUଶ  ሺQTଶ െ RSଶሻUଷ, 

		Δଶ ൌ ሺQTଷ െ RSଷሻUଵ  ሺRSଵ െ QTଵሻUଷ, 

		Δଷ ൌ ሺRSଶ െ QTଶሻUଵ  ሺQTଵ െ RSଵሻUଶ, 

		Δ ൌ ሺSଶTଷ െ SଷTଶሻUଵ  ሺSଷTଵ െ SଵTଷሻUଶ
 ሺSଵTଶ െ SଶTଵሻUଷ, 

and 

ܵ ൌ ݁ݍ coshሺݍ݀ሻ,										 ܶ ൌ ܮ coshሺݍ݀ሻ,	 

ܸ ൌ ݀ݍ coshሺݍ݀ሻ, 

ܮ		 ൌ ቈ
ݍܽߦߣ
ଵܿߩ

ଶ െ ሺ1  ߬ଵݏሻ݁  ቆ
ߣ  ߤ2
ଵܿߩ

ଶ ቇ ܾݍ,	 

ܯ		 ൌ
ߤ
ଵܿߩ

ଶ ൫ܽݍ
ଶ െ ሺ݅											൯,ܾߦ ൌ 1, 2, 3ሻ. 

 
 

7  Inversion of Transforms 
The transformed displacement, microelongation, 
temperature distribution and stresses are the 
functions of the form ሚ݂ሺߦ, ,ݖ  ሻ. Therefore, to getݏ
the solution in physical domain, we have to obtain 
the function, ݂ሺݎ, ,ݖ  ሻ. So, we first invert theݐ
Hankel transform by using 

݂ሺ̅ݎ, ,ݖ ሻݏ ൌ න ߦ ሚ݂ሺߦ, ,ݖ ߦሻ݀ݎߦሺܬሻݏ
∞


.													ሺ44ሻ 

Press et. al. [10] described the method for 
evaluating the integral by using the Romberg’s 
integration with adaptive step size. This method 
uses the results from successive refinements of the 
extended trapezoidal rule followed by 
extrapolation of the results to the limit when the 
step size tends to zero. 

The expression (44) provides the Laplace 
transform ݂ሺ̅ߦ, ,ݖ ,ݎሻ of the function, ݂ሺݏ ,ݖ  ሻ. Nowݐ
the function ݂ሺ̅ݎ, ,ݖ  ሻ can be considered as theݏ
Laplace transform ݃̅ሺݏሻ of some function ݃ሺݐሻ, for 
the fixed values of ݎ and ݖ. The Laplace transform 
݃̅ሺݏሻ can be inverted by using the inversion 
technique given by Honig and Hirdes [11] by 
taking the inverse Laplace transform as 

݃ሺݐሻ ൌ
1
ߨߡ2

න ݃̅ሺݏሻ݁௦௧݀ݏ,
ାఐ∞

ିఐ∞
																			ሺ45ሻ 

where ܿ is an arbitrary constant and is greater than 
all the real parts of the singularities of ݃̅ሺݏሻ. 
 
 

8  Numerical Results and Discussion 
To illustrate the problem considered and solved 
above theoretically in the transformed domain, 
here we take the numerical parameters for a model 
of microelongated thermoelastic medium to get the 
solution of the problem in physical domain, 
numerically by using the inversion technique 
described above. The physical parameters for the 
model considered are given as under:-  
Following Eringen [12], the values of micropolar 
constants are taken as 
ߣ ൌ 9.4 ൈ 10ଵܰ݉ିଶ,			ߤ ൌ 4.0 ൈ 10ଵܰ݉ିଶ,		 

ߩ ൌ 1.74 ൈ 10ଷି݉݃ܭଷ, 

Rajneesh Kumar et al.
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 58 Volume 4, 2019



 
 

and the Microstretch  parameters are given by 

݆ ൌ 0.19 ൈ 10ଵଽܰ݉ିଶ,		 

ߙ ൌ 	0.779 ൈ 10ିଽܰ, 

ߣ ൌ 	0.5 ൈ 10ଵܰ݉ିଶ, ଵߣ						 ൌ 6.5 ൈ 10ܰ݉ିଶ. 

The values of thermal parameters are given by 
Dhaliwal and Singh [13] as 

ଵܭ
∗ ൌ 1.7 ൈ 10ି݉ܬଵିݏଵିܭଵ,	 

∗ܥ ൌ 1.04 ൈ 10ଷି݃ܭܬଵିܭଵ,	 

௧ߙ ൌ 2.33 ൈ 10ିହିܭଵ, 

߬ ൌ 6.131 ൈ 10ିଵଷܿ݁ݏ,			 

߬ଵ ൌ 8.765 ൈ 10ିଵଷܿ݁ݏ, 

݉ ൌ 1.13849 ൈ 10ଵܰ/݉ଶ,		 

ܶ ൌ 0.298 ൈ 10ଷܭ. 

Taking the above parameters into consideration 
and using a computer program for the numerical 
inversion of the integral transforms in MATLAB, 
we draw the variations of displacements, normal 
stress, tangential stress and temperature 
distribution with radial distance ‘ݎ’, for the middle 
surface of the plate and for ݐ ൌ 0.01, and are 
shown in figures (1)-(5), respectively for the cases 
of microelongated thermoelastic medium (MTM) 
and thermoelastic medium (TM). To notice the 
variations for the two cases in the same figure, the 
figures are shown by multiplying the field 
components by some constant factors as per 
requirements in different figures for the different 
cases and are mentioned accordingly for each 
figure, as the magnitude values for some field 
components are very large/small in comparison to 
others. In all these figures, the cases of MTM and 
TM correspond to the solid line (——) and dashed 
line (- - - - -), respectively. 

Fig. 1 depicts the variation of radial 
displacement ݑ with radial distance r. The 
variations are drawn after multiplying the values 
for the case MTM by 104 and for the case TM by 
10-2 to notice the variations. It is noticed that in 
both the cases, i.e., MTM and TM, the magnitude 
values of radial displacement are large initially, 
i.e., near the origin, which goes on decreasing with 
the increase in the value of r and ultimately tends 
to zero with further increase in the value of r, 
following the oscillatory pattern. 

 

            Fig. 1 Variations of radial displacement ݑ 

Also, the radial displacement vanishes for large 
values of r, i.e., at a far away distance from the 
point of application of the source for both the 
cases. Also, the curves for the cases MTM and TM 
show the impact of the microelongation, and it is 
seen that this impact is mainly on the magnitude 
values of radial displacement and the magnitude 
values are large if the microelongation factor is not 
taken into consideration. 

 

        Fig. 2 Variations of normal displacement ݑ௭ 

Fig. 2 describes the variation of normal 
displacement ݑ௭ with radial distance r. The 
variations are drawn after multiplying the values 
for the case MTM by 103 and for the case TM by 
10-3 to notice the variations. It is noticed that in 
both the cases, i.e., MTM and TM, the magnitude 
values of normal displacement tend to zero values 
with increase in the value of r, following the 
oscillatory pattern. Also, the curves for the cases 
MTM and TM show that the magnitude values of 
normal displacement are large if the 
microelongation factor is not taken into 
consideration. 
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          Fig. 3 Variations of normal stress ݐ௭௭ 

 

 

 

         Fig. 4 Variations of shear stress ݐ௭ 

Fig. 3 exhibits the variation of normal stress ݐ௭௭ 
with radial distance ݎ. The variations are drawn 
after multiplying the values for the case TM by 10-

6 to notice the variations. It is noticed that the 
magnitude values of normal stress tend to zero 
values with increase in the value of r, following 
the oscillatory pattern for both the cases, i.e., 
MTM and TM. Also, the curves for the cases 
MTM and TM show that the magnitude values of 
normal stress are large for the case of TM as 
compared to MTM, i.e., the microelongation factor 
decreases the magnitude values of normal stress. 
Similar trends are observed for the variation of 
shear stress ݐ௭ with radial distance r from fig. 4. 
However, the variations are drawn after 
multiplying the values for the case TM by 10-7 to 
notice the variations. 

 

       Fig. 5 Variations of temperature distribution ܶ 

Fig. 5 gives the variation of temperature 
distribution ܶ with radial distance ݎ for the cases 
MTM and TM. The variations are drawn after 
multiplying the values for the case MTM by 104 
and for the case TM again by104 to notice the 
variations. It is noticed that the magnitude values 
of temperature distribution tend to zero values 
with increase in the value of r, following the 
oscillatory pattern for both the cases, i.e., MTM 
and TM. Also, the curves for the cases MTM and 
TM show that the magnitude values of temperature 
distribution are comparable, i.e., the 
microelongation factor has not much impact on the 
temperature distribution. 
 
 

9  Conclusion 
An axisymmetric problem of an infinite circular 
plate of microelongated thermoelastic medium 
acted upon by thermomechanical sources is solved 
and the impact of microelongation is analysed 
graphically. It is seen that in all the cases the 
values for various components are large initially 
and the variation curves follow the oscillatory 
pattern to tend to zero value, which show the 
characteristic of the source applied as the impact 
of the source become negligible, if we move away 
from the point of application of the source. 
Further, there is a large variation in the magnitude 
values of the various components due to 
microelongation factor except in case of 
temperature distribution. This analysis shows the 
properties of the medium considered. The problem 
discussed will be useful for the researchers in the 
field of continuum mechanics and related fields for 
further studies and research. 
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