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Abstract: For each of the frequency bands of the EEG, a stochastic model is assumed. The stochastic 

model assumes that the frequency follows an Ornstein-Uhlenbeck stochastic differential equation. Using 

the extended Kalman filter and pseudo maximum likelihood, the parameters of the model are first 

estimated for the simulated data and proved to be accurate. We then applied the same models, to 

estimate the frequencies, to real data of EEG signals that were obtained from 8 patients suffering from 

Epilepsy. The estimated frequencies showed that there is no difference between the right lobe and the 

left lobe signals, except for the beta band, which agrees with physiological findings. 
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1 Introduction: 

A typical EEG time series appears to be a 

summation of waves with contributions from 

every part of the spectrum, from 0.5 to 150 Hz, 

appearing with fluctuating phases and variable 

amplitudes that need to be estimated. Over the 

years several models have been developed to 

describe the EEG. For example, [1] used the 

autoregressive model for EEG signals, [2] used 

the Welch method to estimate the periodogram 

for the analysis of the EEG signals, [3] used 

limit cycles to generate different frequencies of 

the EEG. 

In general, two main classes of time–

frequency analysis (TFA) approaches have been 

proposed for EEG signals. The first is non-

parametric spectral estimation methods. Among 

these, the most common transform is the short-

time Fourier transform (STFT), which takes the 

fast Fourier transform (FFT) of successive and 

overlapping windows of a signal. However, the 

STFT has two main disadvantages. Firstly, the 

time frequency resolution of the STFT cannot 

simultaneously obtain a high frequency 

resolution and accurately the timing of any 

changes in frequency [4  and 5]. Secondly, the 

spectrum obtained by using the STFT method is 

characterized by a flatness at the peak, which is 

unexplained and usually prevents the distinction 

between spectral peaks or masks low amplitude 

spectral peaks. Actually this is the subject of the 

current report. While Fourier transform (FT) has 

been extensively used to analyze EEG signals, it 

assumes that the signals are stationary random 

processes. EEG, however, is a nonstationary 

process [6 and 7].  Nevertheless, the FT gives 

insight or preliminary results on the shape and 

components of the EEG and one could use it as 

just a transformation of data. 

Other time–frequency transforms, 

including the continuous wavelet transform 

(CWT), can achieve better time–frequency 

estimates for nonstationary signals by applying 

a short window at high frequency and a long 

window at low frequency [8 and 9]. However, 

they have degraded frequency resolution for 

high-frequency contents and degraded time 
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resolution for low-frequency components, and 

also displayed spectral smearing due to the 

finite size of their operator [4]. The choice of 

the wavelet itself is a subjective matter. 

Unlike the non-parametric spectral 

methods, the power spectral density (PSD) 

estimates based time-varying autoregressive 

(TVAR) is a parametric approach [10]. 

Parametric spectral analysis methods can 

usually achieve higher frequency resolution than 

non-parametric approaches provided that an 

appropriate model should be obtained [8]. The 

TVAR model is often utilized as an efficient 

tool to reveal the dynamics of signals due to its 

simplicity and effectiveness [11 and 12]. 

Adaptive Kalman filter algorithm and basis 

function expansion and regression methods have 

been used to find the TVAR parameters [13 and 

10 ]. 

In this report we focus on the estimation 

of the random frequencies of the EEG signal. 

We first use FT and explain the observed 

flatness in the peaks when the simulated signal 

has random frequency. We then propose a 

stochastic differential equation (SDE) model for 

the frequency. This model is an Ornstein-

Uhlenbeck (OU) model that represents a 

frequency bouncing around a steady state value 

in a random fashion. The SDE is driven by a 

Wiener process. The Ornstein-Uhlenbeck (OU) 

model is known to be the limit of a TVAR 

model [14]. 

To analyze the Epilepsy and seizure and 

to estimate the EEG frequencies, a group of 8 

patients were studied. We obtained the EEG 

signal at different times pre ictal changes, ictal 

changes and post ictal changes (pre, event and 

post ) respectively. The EEG spectrum was then 

separated into its bands through band pass 

filters. The median frequency in each band was 

modeled as an OU process. Notice that we 

observe the sinusoidal wave not the frequency. 

Two methods were then used to estimate the 

parameters of the OU model; (1) pseudo 

maximum likelihood based on Girsanov theory, 

(2) the extended Kalman filter. 

We also assumed that the EEG could be 

modeled as the summation of five sine waves 

with different frequency bands (Delta, Theta, 

Alpha, Lower beta and high beta). Assuming 

deterministic and constant frequencies, we 

divided the time series of the EEG into small 

time windows and we estimated the unknown 

five amplitudes and five frequencies in each 

time window. We then performed statistical 

tests on the estimated parameters, of the left 

lobe and the right lobe, from the OU models. 

The results show that there are no differences 

between the left lobe and the right lobe except 

for the beta band. This agrees with the 

physiological findings. 

This report is organized as follows: in 

Section 2, we present the conventional methods 

to describe the EEG signal. In Section 3, we 

present the proposed OU model of the 

frequency of the EEG and how to find an 

estimate for the model parameters. In Section 

IV, we present results obtained from real data 

and conclusions. 

 

2 Problem Formulation: 

The EEG could be modeled as a summation 

of sinusoidal components with random 

amplitude, random frequency, and random 

phase. There are, predominantly, five (5) 

components that belong to the five frequency 

bands; 0.1-3.5 Hz (delta). 4-7.5Hz (theta), 8-13 

Hz (alpha), 14-30 Hz (betaI and betaII) and >30 

Hz (gamma).  

The ith frequency component )(tSi could be 

modeled as: 

 

5,...,1                 ), 2()(  itfSinatS iiii   

     (2. 1) 

 
where

 
ia  ith amplitude that could have its 

own SDE 

 if  ith frequency that could have its 

own SDE 
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 i  ith phase that could have its own 

SDE 

The EEG observed signal, z(t), could be 

modeled as: 

 



5

1

5

1

) 2()()(
i

iii

i

i tfSinatStz 

      (2. 

2)  

One has to find an estimate for the amplitude, 

frequency, and phase of each component. This 

is not an easy task if any or all the components 

are random or could be represented by SDE. 

A typical EEG is shown in Fig. 1 for Channel 

T3-AV where the sampling interval is 1 mSec 

and the total observation period is 1 second. 

 

The Fourier transform of this signal is shown in 

Fig. 2 

 

Notice the presence of around five (5) flattened 

peaks at frequencies 4 Hz., 8 Hz., 14 Hz., 20 

Hz., and 29 Hz. This suggests that channel T3-

AV of the EEG could be modeled as the sum of 

five sinusoids; the frequency of each is random 

and each could be modeled as an OU process. 

This is explained in more details in Section 3. 

 

3 The Proposed Approach and 

Parameter Estimation: 

As we notice in Fig. 2, the peaks of the EEG 

spectrum are flat. This suggests the presence of 

random frequency or random phase and we 

must develop a methodology to estimate this 

randomness. 

3.1 Simulation of Single Sinusoid with 

Random Frequency: 

In order to understand this phenomena of flat 

peaks, we simulated a pure sinusoidal wave with 

the values: (1) 1ia , (2) . 12 Hzfi  , (3) 

3/ i . The sampling interval is 0.001 

seconds, and the length of the data is 1024 

points. The Fourier transform (FT) is shown in 

Fig. 3. Notice the sharp peak of the spectrum 

located at 12 Hz. If we add random component 

to the phase while assuming deterministic and 

constant amplitude and frequency we get the 

model: 

 

5,...,1                 )),(  2()(  itWtfSinatS iiiii 

     (3. 1) 

 
where

 

)(tWi  Wiener process with variance t . 

Equation (3. 1) is simulated with 5i . As the 

value of i is increased the peak of the spectrum 

flattens and multiple peaks start to emerge. This 

model was previously investigated and the 

model parameters were obtained using the 

likelihood method [15 and 16]. 
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In this report, however, we propose another 

model; an OU stochastic process model for the 

frequency if . This model represents a 

frequency if  that is bouncing around a 

reference value i . The speed of return to the 

reference value is controlled by i . The strength 

of excursion is controlled by i . The Ornstein-

Uhlenbeck(OU)  model for the frequency is 

given as: 

 

  5,...,1                 ),()()(  itdWdttftdf iiiiii 

    (3. 2)

 
where

 
i  controls the return of if to the 

value i  

 i  the reference frequency or the 

median frequency for the EEG ith band 

 i  controls the strength of excursion 

around i  

Equation (2. 1) is simulated with the frequency 

given in equation (3. 2) as shown in Fig. 4. The 

values are: 1.0i , 12i , and 1i . The 

log magnitude of the Fourier transform of the 

simulation of a single frequency component is 

shown in Fig. 3. We also show the simulations 

of equations (3. 1) and (3. 2). Notice the effect 

of including randomness; the spectrum flattens 

and the noise level increases. Compared to the 

random phase model of equation (3. 1), the 

flatness of the peak is clearer when we use the 

OU model for the frequency (equation (3. 2)). 

That is why we adopt this model in this paper. 

 

 

 

 
The estimates of the different unknowns in 

equation (3. 2) are obtained through the methods 

of pseudo maximum likelihood and the 

extended Kalman filter as will be explained 

next. The estimated and true frequencies are 

shown in Fig. 5. The Fourier transform of the 

estimated single sinusoid with random 

frequency, along with the true simulated 

sinusoid with random frequency are shown in 

Fig. 6. This simulation shows the efficacy of the 

proposed method. 
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3.2 The SDE of the Single Sinusoid when the 

Frequency is an OU Process: 

In this subsection we derive the SDE 

governing the observations of a single sinusoid 

that has its frequency following an OU process. 

This is a straightforward application of the Ito 

lemma. The ith signal is modeled as before as: 

 

5,...,1                 ),)( 2()(  ittfSinatS iiii 

     (3. 3)  

Thus,

 

5,...,1                 ,
 2

)(
arcsin

)( 




















 i
t

a

tS

tf

i

i

i

i




     (3. 4)
 

We now derive an SDE for the observed signal 

)(tSi  . Using Ito lemma we get: 

 

 2

2

2

)(
)(

)(

2

1

)(
)(

)()(
)(

tdf
tf

tS

tdf
tf

tS
dt

t

tS
tdS

i

i

i

i

i

ii
i
















 

where 
))( 2cos()(  2

)(
iiii

i ttftfa
t

tS
 




 

 ))( 2cos(   2
)(

)(
iii

i

i ttfta
tf

tS
 




 

   ))( 2(sin   2
)(

)( 2

2

2

iii

i

i ttfat
tf

tS
 




 

   dttdf ii

22
)(   

Collecting terms we get: 

 

 

  )())( 2cos(   2           

))( 2(sin   2
2

1

)())( 2cos(   2

))( 2cos()(  2

)(

22

tdWttfta

dt

ttfat

tfttfta

ttftfa

tdS

iiiii

iiii

iiiiii

iiii

i






































 

Substituting“ )())( 2cos( 22 tSattfa iiiii 

”, we get: 

 

 

  )()(  2

)(  2 
2

1

)()(  2)()( 2

)(

22

22

2222

tdWtSat

dt
tSt

tftSattSatf

tdS

iiii

ii

iiiiiiii

i































 

5,...,1                 i
 

      

     (3. 5) 

Using equation (3. 4), the observation equation 

(3. 5) could be represented in the compact 

format: 
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 
  )(),( 

),(),(),(),()( 2

tdWStB

dtStDStCStBStAtdS

iiii

iiiiiiiiiiiii









 

    )(),( ),(),( tdWStBdtStStA iiiii

T

iii  

     (3. 6)
 

where  Tiiiiiiii
StDStCStBSt ),(),(),(),(   

)(
 2

)(
arcsin

 2),( 22 tSa
t

a

tS

StA ii

i

i

i

ii 



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






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


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


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 )(  2),( 22 tSatStB iiii    
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)(
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)(  2),( 22
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
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 









 i

i

i
ii

a

tS
tSa 

)(
arcsin)( 22  

   )(  2 
2

1
),(

2
tStStD iii   

The unknown parameters are the vector 

 iiiiiia  . If we have only one 

frequency component, one is able to normalize 

the amplitude to 1 and the phase to zero. Thus, 

the reduced vector of unknown parameters 

becomes  Tiiii

2  where T stands for 

transpose.
 

Thus, the drift term of the observation 

equation (eqn. 3. 6) is linear in the vector of 

unknowns  Tiiii

2  . This will 

facilitate the estimation process. 

There are several methods to find the estimates 

of the unknowns [17,  15 and 16]. We next 

present the estimation methods adopted in this 

report. 

3.3 Pseudo Maximum Likelihood Estimate of 

the OU Parameters and the Extended 

Kalman Filter: 

For a known value of i , the log 

likelihood function of the observations at time 

“t”,  );(, tStL i , is given as [18 and 15]:

 
 

 

 
 









t

i

iii

i

T

iii

t

iii

i

T

iii

i

sdS
SsB

SsSsA

ds
SsB

SsSsA
tStL

0

2

0

2

2

)(
),( 

),(),(

),( 

),(),(

2

1
);(,










(3. 7) 

Since i has to be estimated, equation (3. 7) 

represents a pseudo log likelihood function. 

Notice that  );(, tStL i is quadratic function in 

the unknown vector . This will facilitate the 

estimation steps and the calculations of the 

estimate properties such as bias and variance. In 

the next subsection we maximize the likelihood 

function and convert the stochastic integration 

to Riemann integration. We then present the 

statistical properties of the estimates. The 

equations for the extended Kalman filter are 

presented and a summary of the algorithm is 

given. 

3.3.1 Estimation of the OU parameters: 

For an estimated value i̂ , maximizing 

 );(, tStL i  with respect to the unknown vector 

  will yield the pseudo maximum likelihood 

estimates ̂  as follows: 
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Rearrange we get: 
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(3. 8) 

This is the pseudo maximum likelihood 

estimate, )(ˆ t , given the observations up till 

time t. In equation (3. 8) we have a stochastic 

integration term 
 

t

i
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ii sdS
SsB

Ss
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2
)(
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),(




. We 

convert this stochastic integration to Riemann 

integration using Ito lemma [19 and 17]. For 

example, we know that 
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It is rearranged as: 

 
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Substituting we get: 
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Since we normalize, the amplitude is set to 1 i.e. 

1ia . The above is integration with respect to 

time. Numerical methods are used to find this 

integration and we use the measured 
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observations )(sSi  for 0<s<T. Similar steps are 

taken for the other components of equation (3. 

8).  

3.3.2 Statistical Properties of the Pseudo 

Estimates )(ˆ t : 

To find the statistical properties of the 

estimates )(ˆ t , we need another expression for 

)(ˆ t . We do this by substituting the expression 

of )(sdSi of equation (3. 6) into equation (3. 8) 

and we get: 

 
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which is reduced to: 

 
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 (3. 9) 

Assuming that  
 

1

0

2
),( 

),(),(













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
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iii ds
SsB

SsSs




could 

be approximated as a deterministic quantity by 

replacing )(tSi with its measured values, an 

SDE for )(ˆ t is approximated as: 
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   (3. 10) 

with initial conditions  )0(ˆ . 

Taking expectations of both sides of equation 

(3. 9) we get: 
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       

     (3. 11) 

i.e. the estimate is approximately unbiased. 

Similarly the variance of the estimate is 

obtained as: 
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As we did before replacing )(tSi with its 

measured values, we get the approximate 

expression for the variance of the estimate as: 
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    (3. 12) 

We could have also used equation (3. 10) to find 

the approximate mean and variance of the 

estimate )(ˆ t . 

3.3.3 Summary of the Algorithm: 

(1) Use bandpass filters to separate the 

different EEG bands. 

(2) For each band, normalize the amplitude 

to one and phase to zero. 

(3) For each band, use equation (3. 8) to get 

an estimate for the unknowns 

 Tiiii

2  . 

 

3.3.4 A Reduced Form Model and the Extended 

Kalman Filter for Parameter Estimation [20 and  

21]: 

In this subsection we present another 

approach to estimate the parameters of the OU 

model given that we observe sine waves and we 

do not observe the frequency. Since the 

observation equation is nonlinear in the 

frequency, we use the extended Kalman filter. 

Extended Kalman filter is used when the states 

equations and/or the observations equations are 

nonlinear [21]. Effectively we linearize around 

some reference set of values that are obtained 

from the equations themselves (effectively we 

transform the nonlinear observations of the 

frequency into linear observations of the 

frequency). We linearize around the reference 

frequency )(tfRi which is the solution of the 

deterministic equation: 

 

  5,...,1                        ,)()(  idttftdf RiiiRi 

    
(3. 13a)

 

Define
 

)()()()( tftftftx Riii    

Thus, )()()( tdftdftfd Riii   

For every frequency component, the change in 

frequency is relatively small (less than 10 % of 

the reference). Thus, we develop another OU 

model for the change in frequency )(tfi  as: 

 )()()( tdftdftfd Riii   

   dttftdWdttf Riiiiiiii )()()(  

  

 
)()( tdWdttf iiii  
  

  
  (3. 13b) 

Define )()()()( tftftftx Riiii  ,
  

and
 

dttdWtu iii /)()(   

 Equation (3. 13b) now has the form: 

 )()()()( tdWdttxtFtdx iiiii 
 

Or )()()(/)( tutxtFdttdx iiii 
  

     (3. 14) 

)(tui is zero mean Gaussian noise with variance

2)( iu tR  , ii tF )(   

Similarly for the observation equation which is 

nonlinear in )(tfi : 
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5,...,1                 ),)( 2()(  ittfSinatS iiii 

    (3. 3)  

We linearize around the reference frequency 

)(tfRi .  

Define 

))( 2(  2

)(

))( 2(
)(

)()(

iRii
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ii
ii

ttfCosta
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ttfSin
atH

Rii














  

Using Taylor series expansion around )(tfRi , 

and keeping only the first order term, we get the 

approximation: 

 

)()())( 2()( tftHttfSinatS iiiRiii  
 

 

 
)()())( 2( txtHttfSina iiiRii    

And the approximate observations become: 

 

5,...,1                 ),()()()(  itvtftHty iiii 
 

Or

 

5,...,1                 ),()()()(  itvtxtHty iiii  

    
(3. 15)

 

where ))( 2()( iRiii ttfSinatv   is 

approximated as additive white Gaussian noise 

with zero mean and variance )(tRv . Equation (3. 

14) is the state equation and equation (3. 15) is 

the observation equation. Both are linear. Thus, 

we have a set of linear equations and, for every 

 Tiiii

2  , we use the linear Kalman 

filter equations as follows: 

 )/(ˆ)()/1(ˆ kkxkFkkx iii    

     (3. 16) 
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(3. 19) 

 

 
)/1(

)1()1()1/1(

kk

kHkKIkk

i

iii





    (3. 20) 

Where )/1(ˆ kkxi  is the estimate of the 

state at time “k+1” , x(k+1), given observations 

up to time k with variance )/1( kk   . 

)1/1(ˆ  kkxi
is the estimate of the state 

at time “k+1” , x(k+1), given 

observations up to time “k+1” with 

variance )1/1(  kki . 

The initial conditions )0/0(ˆ
ix , and )0/0(i

could be guessed or estimated. Their effect on 

the final solution, however, is limited.  

3.3.5 Summary of the extended Kalman filter 

based approach: 

(1) For a given set of estimated parameters 

 Tiiii

2  we use the Kalman 

filter to find an estimate for 

)()( tftx ii   that is substituted in the 

observation equation to get an estimate 

for the observations )(ˆ tSi . 
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(2) These estimates )(ˆ tSi are then compared 

to the true observations )(tSi  and we 

change the unknown parameters 

 Tiiii

2  , through the 

gradient method, to reduce the sum of 

squared differences between the 

observed and the actual measurements. 

(3) The process is repeated several times till we 

get no change in the estimates of the 

parameters with given or estimated initial 

conditions )0(ˆ
ix and )0(i . 

 

4 Results of Real Data: 

We have the recorded EEG from 8 

patients. It is known that T3 and T4 sharp waves 

are EEG representation of abnormality. They 

are the type of waves that are associated with 

seizures. So we found that the data generated 

from T3 and T4 are the most suitable data to 

perform our study. We converted our data signal 

from time domain to frequency domain by using 

Fast Fourier Transform (FFT). For the 

estimation of the OU parameters, band pass 

filters were used to separate the EEG five bands. 

In each band, we used the pseudo maximum 

likelihood method and the extended Kalman 

filter (EKF) method as explained in Section 3.  

We also obtained similar results when 

we operated in the time domain. We divided the 

data into small 200 mSec windows for the three 

segments of data; before event interictal 

changes, during event interictal changes and 

after event interictal changes. In each window, 

assuming constant and deterministic unknowns, 

we estimated the five frequencies. Typical 

estimates are given in Fig. 7. 

 For the statistical tests, we used the 

average of the estimates. In all cases and using 

the different methods, there was no significant 

difference in the estimates of sensor T3 and T4, 

except for the beta band, which agrees with 

physiological findings. We next present the 

results in some details. 

Statistical analysis was conducted using 

SPSS for windows, version 18 (SPSS, Inc., 

Chicago, IL). For more details about the 

statistical test please refer to [22]. The current 

test involved two independent variables. The 

first one was the (tested group); between subject 

factor which had two levels (T3 represented left 

lobes and T4 represented right lobes). The 

second one was the (measuring periods); within 

subject factor which had three levels (pre 

interictal changes, event interictal changes, and 

post interictal changes). In addition, this test 

involved one tested dependent variables 

(frequency of delta, theta, alpha, low beta, and 

high beta). Prior to final analysis, data were 

screened for normality assumption, 

homogeneity of variance, and presence of 

extreme scores. This exploration was done as a 

pre-requisite for parametric calculations of the 

analysis of difference. 

Descriptive analysis using histograms 

with the normal distribution curve showed that 

the estimated frequency of theta, alpha, and high 

beta was normally distributed and do not violate 

the parametric assumption for the measured 

dependent variable. Additionally, testing for the 

homogeneity of covariance revealed that there 

was no significant difference with p values of > 

0.05. The box and whiskers plots of the tested 

variable were done. Normality test of data using 

Shapiro-Wilk test was used, that reflect the data 

was normally distributed for the estimated 

frequency of theta, alpha, and high beta. All 

these findings allowed the researchers to 

conduct parametric analysis. So 2×3 mixed 

design MANOVA was used to compare the 

tested variables of interest at different tested 

groups and types of velocity. With the initial 

alpha level set at 0.05. While Shapiro-Wilk test 

and descriptive analysis using histograms with 

the normal distribution curve revealed the data 

was not normally distributed for frequency of 

delta and low beta. So non parametric statistical 

tests in the form of (Freidman tests) was used to 

compare among different measuring periods for 

each group and (Wilcoxon Signed Rank tests) 
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was used as post ad hoc tests if (Freidman tests) 

is significant. Also, "Mann-Whitney tests" 

(nonparametric alternative to the independent t 

test) was used to compare between T3 and T4 in 

different measuring periods. The alpha level 

was set at 0.05. 

4.1 Short time windows: 

Using STFT and for a typical patient, 

Figure (7) shows the estimated frequencies in 

the five bands (Delta, Theta, Alpha, Lower beta 

and high beta) in the three different times (pre 

inter ictal changes , event inter ictal changes and 

post inter ictal changes). 

 

 

Figure (7): Using STFT, the estimated 

frequencies for the different five bands 

[Delta(blue), Theta(red), Alpha(green), 

Lower beta(purple) and high beta(pink)] 

at different time conditions (pre , event 

and post interictal changes ). 

 

 

4.2  Extended Kalman Filter Based Results: 

We applied our calculations to the left and the 

right lobes signal T3 and T4 respectively. We 

used the equations (3. 16) - (3. 20) to find the 

estimates of the frequencies. We compared 

between T3 and T4 results and compared 

between pre , event and post to know if there is 

significant difference or not. 

Using EKF, Figure (8) shows the result of 

probability versus frequency from the 

histogram for frequencies of delta band in 

three different times (pre inter ictal changes 

,event inter ictal changes and post inter ictal 

changes). The vertical line represents the 

probability and horizontal line represents 

frequency in hertz. The first plot shows the 

result of probability versus frequency of delta 

before event interictal changes, the second plot 

shows the result of probability versus 

frequency of delta during event interictal 

changes and the last plot shows the result of 

probability versus frequency of delta after 

event interictal changes. 
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Figure (8):Result of probability versus 

frequency in Hz from the histogram for the 

estimated frequency of delta band in three 

different time (pre interictal changes, event 

interictal changes and post interictal 

changes). 

Using EKF, Figure (9) shows the result of 

probability versus frequency from the histogram 

for frequencies of theta band in three different 

times (pre interictal changes , event interictal 

changes and post interictal changes). The 

vertical line represents the probability and 

horizontal line represents frequency in hertz.  

The first plot shows the result of probability 

versus frequency of theta before event interictal 

changes, the second plot shows the result of 

probability versus frequency of theta during 

event interictal changes and the last plot shows 

the result of probability versus frequency of 

theta after event interictal changes. 

 

 

Figure (9): Result of probability versus 

frequency in Hz from the histogram for the 

estimated frequency of theta band in three 

different time (pre interictal changes, event 

interictal changes and post interictal 

changes). 

Using EKF, Figure (10) shows the result of 

probability versus frequency from the histogram 

for frequencies of alpha band in three different 

times (pre interictal changes, event interictal 

changes and post interictal changes). The 

vertical line represents the probability and 

horizontal line represents frequency in hertz. 

The first plot shows the result of probability 

versus frequency of alpha before event interictal 

changes, the second plot shows the result of 

probability versus frequency of alpha during 

event interictal changes and the last plot shows 

the result of probability versus frequency of 

alpha after event interictal changes. 
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Figure (10):Result of probability versus 

frequency in Hz from the histogram for the 

estimated frequency of alpha band in three 

different time (pre interictal changes, event 

interictal changes and post interictal 

changes). 

 

Using EKF, Figure (11) shows the result of 

probability versus frequency from the histogram 

for frequencies of lower beta band in three 

different times (pre interictal changes , event 

interictal changes and post interictal changes). 

The vertical line represents the probability and 

horizontal line represents frequency in hertz. 

The first plot shows the result of probability 

versus frequency of lower beta before event 

interictal changes, the second plot shows the 

result of probability versus frequency of lower 

beta during event interictal changes and the last 

plot shows the result of probability versus 

frequency of lower beta after event interictal 

changes. 

 

Figure (11):Result of probability versus 

frequency in Hz from the histogram for the 

estimated frequency of lower beta band in 

three different time (pre interictal changes, 

event interictal changes and post interictal 

changes). 

Using EKF, Figure (12) shows the result of 

probability versus frequency from the histogram 

for frequencies of higher beta band in three 

different times (pre interictal changes , event 

interictal changes and post interictal changes). 

The vertical line represents the probability and 

horizontal line represents frequency in hertz. 

The first plot shows the result of probability 

versus frequency of higher beta before event 

interictal changes, the second plot shows the 

result of probability versus frequency of higher 

beta during event interictal changes and the last 

plot shows the result of probability versus 

frequency of higher beta after event interictal 

changes. 
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Figure (12):Result of probability versus 

frequency in Hz from the histogram for the 

estimated frequency of higher beta band in 

three different time (pre interictal changes, 

event interictal changes and post interictal 

changes). 

 

4.3  OU Model Estimates: 

We applied the OU model (equation 3. 2) to the 

five frequency bands to get the three parameters 

(mu, lamda and sigma) in each band (delta, 

theta, alpha, lower beta and higher beta) for T3 

and T4 signals and at different time conditions ( 

pre, event and post ) and for the 8 patients. 

In the OU model of frequency, we compared   

between pre, event and post in T3 and T4 for all 

bands (delta , theta , alpha , lower beta and 

higher beta) to know if there is significant 

difference between interictal changes seizure, 

before interictal changes and after interictal 

changes. 

 

4.4.1 Overall effect 2× 3 Mixed Design 

MANOVA: 

Statistical analysis using 2x3 mixed 

design MANOVA indicated that there were no 

significant effects of the tested group (the first 

independent variable) on the all tested 

dependent variables; frequency of theta, alpha, 

and high beta  (F=0.245, P=0.949). In addition, 

there were no significant effects of the 

measuring periods (the second independent 

variable) on the tested dependent variables 

(F=1.232, P=0.488). However, the interaction 

between the two independent variables was not 

significant, which indicates that the effect of the 

tested group (first independent variable) on the 

dependent variables was influenced by the 

measuring periods (second independent variable) 

(F=0.572, P=0.789) . 

4.4.2The Estimated Frequency  of theta (HZ ) 

As illustrated in figure (10), the mean ± SD 

values of the estimated frequency of theta in the 

"Pre", " Event",  and "Post " were  6.64 ±1.63, 

 6.99±1.35, and 6.61±1.28 respectively at 

the T3. The univariate tests revealed that there 

was no significant differences in the mean 

values of the estimated frequency of theta 

among different measuring periods (F=0.174, 

P=0.842). As well as, the mean ± SD values of 

frequency of theta in the "Pre", "Event", and 

"Post" were 6.14 ±1.55, 7.08 ±1.42, and 6.92 

±1.56 respectively at the T4. The univariate 

tests revealed that there was no significant 

differences in the mean values of the estimated 

frequency of theta among different measuring 

periods (F=0.937, P=0.415). 
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Figure (13):Mean values of the estimated 

frequency of theta at pre, event, and post 

in both T3 and T4. 

 
4.4.2 The Estimated Frequency  of alpha ( HZ) 

As illustrated in figure (11), the mean ± SD 

values of frequency  of alpha in the "Pre", " 

Event",  and "Post " were  10.31 ±1.49, 10.94 

±01.27, and 10.52±1.66 respectively at the T3. 

The univariate tests revealed that there was no 

significant differences in the mean values of 

frequency of alpha among different measuring 

periods (F=0.414, P=0.669).As well as, the mean 

± SD values of frequency of alpha in the "Pre", 

"Event", and "Post" were 10.15 ±1.85, 10.97 

±1.64, and 9.18±1.58 respectively at the T4. The 

univariate tests revealed that there was no 

significant differences in the mean values of 

frequency of alpha among different measuring 

periods (F=2.808,P=0.094). 

 

 

Figure (14):Mean values of frequency of 

alpha at pre, event, and post in both T3 

and T4. 

 

 

4.4.2 The Estimated Frequency  of high beta 

(HZ ) 

As illustrated in figure (12), the mean ± SD 

values of frequency  of high beta in the "Pre", " 

Event",  and "Post " were  25.5 ±3.64,

 21.16 ±2.37, and 21.49 ±2.18 

respectively at the T3. The univariate tests 

revealed that there was no significant 

differences in the mean values of frequency of 

high beta among different measuring periods 

(F=5.164, P=0.02*). So, multiple pairwise 

comparison tests (Post hoc tests) revealed that 

there was significant differences at post in 

compared to pre with (p=0.039*).  While, there 

was no significant differences between (Pre 

versus Event) and (Event versus Post) with (p= 

0.068 and 1.00) respectively. As well as, the 

mean ± SD values of frequency of high beta in 

the "Pre", "Event", and "Post" were 23.58 ±3.86, 

21.36±1.92, and 24.42 ±4.10 respectively at the 

T4. The univariate tests revealed that there was 

no significant differences in the mean values of 

frequency of high beta among different 

measuring periods (F=2.147, P=0.154). So, 

multiple pairwise comparison tests (Post hoc 
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tests) revealed that there was nosignificant 

differences between (Pre versus Event), (Pre 

versus Post), and (Event versus Post) with (p= 

0.635, 1.00, and 0.148) respectively. 

 

 

 

Figure (15): Mean values of frequency of 

high beta at pre, event, and post in both 

T3 and T4 

4.4.3 The Estimated Frequency   of delta ( 

Hz) 

As illustrated in figure (13), the mean rank 

values of frequency of delta in the "Pre", 

"Event", and "Post" were 1.75, 2.13, and 2.13 

respectively at the T3. The Freidman tests 

revealed that there was no significant 

differences in the mean rank values of 

frequency of delta among different measuring 

periods (F=0.750, P=0.687). As well as, the 

mean rank values of frequency of delta in the 

"Pre"," Event",  and "Post " were  1.88 , 2, 

and 2.13 respectively at the T4. The Freidman 

tests revealed that there was no significant 

differences in the mean rank values of 

frequency of delta among different measuring 

periods (F=0.25, P=0.8) 

 

Figure (16): Mean rank values of 

frequency of delta at pre, event, and post 

in both T3 and T4. 

 

 

4.4.4 The Estimated Frequency  of low beta 

(Hz ) 

As illustrated in figure (14), the mean rank 

values of frequency of low beta in the "Pre", 

"Event", and "Post" were 2, 2.13, and 1.88 

respectively at the T3. The Freidman tests 

revealed that there was no significant 

differences in the mean rank values of 

frequency of low beta among different 

measuring periods (F=0.25, P=0.882). As well as, 

the mean rank values of frequency of low beta 

in the "Pre"," Event",  and "Post " were  1.88, 

1.75, and 2.38 respectively at the T4. The 

Freidman tests revealed that there was no 

significant differences in the mean rank values 

of frequency of low beta among different 

measuring periods (F=1.75, P=0.417). 
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Figure (17): Mean rank values of 

frequency of low beta at pre, event, and 

post in both T3 and T4. 

 

 

5 Summary and Conclusions: 

In this report, through simulation, we were able 

to explain the flatness we observe in the 

spectrum of the EEG. The randomness of the 

frequency was shown to be a possible cause. For 

each EEG frequency band, a model was 

developed that assumed that the frequency is 

random and is the output of a stochastic 

Ornstein-Uhlenbeck (OU) process driven by 

Wiener process. In this model, the frequency 

bounces around a fixed value. This model was 

then used in the observation equation (the 

measurements of the EEG), and a stochastic 

differential equation (SDE) was developed for 

the observed sinusoid (or EEG). The pseudo 

maximum likelihood method and the extended 

Kalman filter were then used to find the 

parameters of the stochastic process that 

represent the random frequency and the random 

frequency itself. The estimation procedures 

were applied to the signals of the T3 and the T4 

sensors, of the EEG, and for eight patients and 

for three intervals of activities. It was shown 

that there are no statistically significant 

differences in the estimated parameters between 

the T3 and the T4 except for the beta band. This 

result agrees with the literature. 

Other models for the EEG could also be 

considered. A stochastic amplitude with fixed 

frequency model or a stochastic amplitude with 

a stochastic frequency model are currently under 

investigation. The objective is to find accurate 

estimates of both the amplitude and the 

frequency for the different EEG bands. It is 

hypothesized that accurate estimates would 

result in accurate early diagnosis of diseases. 

A much more difficult problem would be the 

estimation of the amplitudes and frequencies, 

without band pass filters, when both are 

stochastic. These issues and others are currently 

under investigation. 
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