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Abstract: - Named Entity Recognition (NER) and Disambiguation are sub-tasks in Natural Language 
Processing (NLP) that seek to identify and classify named entities in the text into their designated categories. 
With recent advancements in Deep Learning it is possible to use attention mechanisms and recurrent networks 
in order to produce reliable NER predictions. The use of NER ranges from profanity detection to extracting 
meta-data from documents. However, the greatest shortcoming of the classical NER models is the limited 
number of predefined classes that are set in the task (i.e. Person (PER), Location (LOC), 
Companies/institutions (ORG) etc.). With this limitation in mind we proposed a novel fast approach (FastEnt) 
to tackle the task of identifying and detecting Custom Named Entities (CNE) that are not limited to definition. 
The task was split into 2 parts, where we initially create a basis space of words using several examples of the 
entity we are trying to identify, by using search across the word representation found through FasText and 
Word2Vec. We further complete automated online scraping from several sources such as Reddit in order to 
obtain an annotated corpus that will be used in the modeling step. 
After producing the Annotated corpus with the designated CNE we train a dilated convolutional neural network 
with recurrent mechanisms to complete NER on this new entity. We test our findings on classic NE’s 
mentioned above and are able to reliably reproduce the State-of-the-art (SOTA) results and further show 
consistent results with this approach on several custom named entity tasks. 
 
Key-Words: - NLP, NER, Neural Networks, CRF, Parallelization, databases, API. 
 
1 Introduction 

Before starting the background of Named Entity 
Recognition (NER) we need to introduce several 
concepts for further use. Firstly, the notion of 
named entity must be explicitly defined. 
 
Definition 1: A named entity is a term for which 
one or many strings, such as words or phrases, 
stands (fairly) consistently for some referent. 
 
This definition is closely associated to the concept 
of the rigid designator introduced by Kripke and 
Saul [1]. 
 
Definition 2: A rigid designator known as the 
absolute substantial term is a type of a term that 
designated a concept uniquely in the field of its 
existence while not identifying anything else outside 
of that field in the process. 
 
The task of Named Entity Recognition involves 
identifying and pointing out the strings that fall into 
some named predetermined entity class(es), in the 
text. Although, attempts were made to create fixed 

rigid designators as entities for NER, in common 
practice one must deal with numerous referents that 
cannot be considered philosophically "rigid". This 
can be clearly shown by discussing the following 
example: 

It was an interesting time for 
the Ford Motor Company. 

Here we can easily recognize that the string 
“Ford Motor Company” refers to the 
organization, yet we must not overlook the fact 
that the word “Ford” can easily refer to many 
entities. 
 
 
2 Problem Formulation 

The named entity recognition task can be 
conceptually separated into two problems: detection 
of probable strings of named entities and the 
classification of the detected strings by the type of 
entity they refer to. 
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Fig.1. An example of classification by type. 
 

The first part of the problem can be described as 
a segmentation task, where the model must try to 
identify the location of probable entities from the 
contiguous spans of tokens. The second phase of the 
problem requires choosing an ontology in order to 
be able to classify the segmented strings. 
The results of these two tasks are evaluated using 
several metrics. 
• Precision: Number of predicted entity string 

spans that line up exactly with spans in the 
evaluation data.     
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
|{𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝}⋂{𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝}|

|{𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝}|  

• Recall: Number of names in the evaluation data 
that appear at exactly the same location in the 
predictions.      
𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

=
|{𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝}⋂{𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝}|

|{𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝}|  

• F1: This metric is the harmonic mean of 
Precision and Recall.    

𝐹𝐹1 =
2

1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

+ 1
𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

= 2 ∙
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

 

 
2.1 Existing Solutions 

Several common approaches have been used in 
order to implement NER systems. One set of 
solutions relies heavily on grammar-based rules and 
hand-crafted features, during the processes of 
segmentation and classification. The precision of 
this types of models are generally higher than 
compared to other approaches, however it must be 
noted that models lack significantly in recall and 
require months of work of experienced 
computational linguists [2]. 

 
Fig.2. Basic dependencies in entity recognition 
 

Usually NER is tackled using statistical and 
machine learning approaches. A frequent 
shortcoming of this kind of models is the 
requirement of a large hand annotated training and 
testing datasets. Some methods offer semi-
supervised annotation modules in order to overcome 
this issue. The most prominent implementations of 
NER systems include a variation or an ensemble of 
the following methods: 

1. Hidden Markov Models 
2. Conditional Random Fields 
3. Neural Networks (Convolution and 

Recurrence included) 
All of these methods show significant promise and 
good results on the task. Each of the methods will 
be discussed in Methodology section. Even in the 
early implementations of NER systems such as 
Zhou et al. [3] we can see that the system based on 
Markov models achieves solid precision and recall 
on the predefined classes of CoNLL dataset [4]. 
With the advancement of hardware, more 
computationally intensive methods came into play. 
The efforts of Ling et al [5] and Lee, C. (2017) [6] 
signify the trend the current solutions are moving 
towards along with their results. 

Eventually mixing the aforementioned 
techniques results in master systems such as 
Explosion’s Spacy, Stanford's CoreNLP and several 
others. 
 
2.2 Current Challenges 

One of the most limiting factors of NER is the 
fixed number of classes of entities that the current 
systems use. Indeed, the commonly used CoNLL 
entity tags do not in any way cover the vast majority 
of probable entities that a user might be interested in 
segmenting. However, developing a corpora for 
custom named entity recognition is also a 
cumbersome task requiring an annotated dataset as 
mentioned in previous sub-section, thus effectively 
confining the researcher to hard and unnecessary 
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labor during the project. A probable solution will be 
offered to each of these problems in this article. 
 
 
3 Methodology 
 
3.1 Hidden Markov Models 

The Hidden Markov Model is one of the most 
important machine learning models in speech and 
language processing. Hidden Markov Models 
(HMM) are doubly embedded stochastic processes, 
utilized for modelling diverse situations that are 
characterized by evolution of some events that 
depend on some internal factors. These internal 
factors are more commonly referred to as states, 
while the events are called observations. To grasp 
an intuition behind HMMs we can think of it as a 
closed system, that has $n$ states, which is required 
to reside in on one of the states at a given fixed 
point in time and can also make transitions between  
those n states with some predetermined probability 
while emitting observations with some other 
predetermined probability set [7]. 
 
Definition 3: A model 𝜎𝜎(𝐴𝐴,𝐵𝐵,𝜋𝜋,𝑝𝑝,𝑚𝑚) is called a 
Hidden Markov Model if: 
   1.  n - signifies the number of states. 
   2.  m - signifies the number of possible emissions. 
   3. π - is a vector, where an element πi signifies the 
probability of being at state i during the time step 1. 
   4. A - is the transition matrix, where Ai,j signifies 
the probability of transferring from state i to j. 
   5. B - is the emission matrix, where Bi,j signifies 
the probability of emitting the symbol j while in 
state i. 
   6. 
𝑃𝑃�𝑞𝑞𝑟𝑟+1 = 𝑆𝑆𝑗𝑗 �𝑞𝑞𝑟𝑟 = 𝑆𝑆𝑝𝑝� =
𝑃𝑃�𝑞𝑞𝑟𝑟+1 = 𝑆𝑆𝑗𝑗 �𝑞𝑞𝑟𝑟 = 𝑆𝑆𝑝𝑝 , 𝑞𝑞𝑟𝑟−1 = 𝑆𝑆𝑘𝑘 ,𝑞𝑞𝑟𝑟−2 = 𝑆𝑆𝑟𝑟 , … � 
where Sk are the states and qt in the state at time t. 
 
   It must be noted that this definition asserts that 
only the present state matters when predicting the 
future states. In the context of named entity 
recognition our aim is to find an optimal tag 
sequence 𝑇𝑇1

𝑝𝑝 = 𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑝𝑝  for the given token 
sequence 𝐺𝐺1

𝑝𝑝 = 𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑝𝑝  that maximizes:  
 

log𝑃𝑃 (𝑇𝑇1
𝑝𝑝 |𝐺𝐺1

𝑝𝑝) = log𝑃𝑃 (𝑇𝑇1
𝑝𝑝) + log

𝑃𝑃(𝑇𝑇1
𝑝𝑝 ,𝐺𝐺1

𝑝𝑝)
𝑃𝑃(𝑇𝑇1

𝑝𝑝) ⋅ 𝑃𝑃(𝐺𝐺1
𝑝𝑝)    (1) 

 
In order to simplify the equation further we can 
assume mutual information independence. 

log𝑀𝑀 𝐼𝐼(𝑇𝑇1
𝑝𝑝 ,𝐺𝐺1

𝑝𝑝) = �𝑀𝑀𝐼𝐼(𝑟𝑟𝑝𝑝 ,𝐺𝐺1
𝑝𝑝)

𝑝𝑝

𝑝𝑝=1

    (2) 

can be written as: 

log
𝑃𝑃(𝑇𝑇1

𝑝𝑝 ,𝐺𝐺1
𝑝𝑝)

𝑃𝑃(𝑇𝑇1
𝑝𝑝) ⋅ 𝑃𝑃(𝐺𝐺1

𝑝𝑝) = � log
𝑃𝑃(𝑟𝑟𝑝𝑝 ,𝐺𝐺1

𝑝𝑝)
𝑃𝑃(𝑟𝑟𝑝𝑝)

    (3)
𝑝𝑝

𝑝𝑝=1

 

 
Plugging equation 2 into equation 1 yields the 
following general equation that we use: 

log𝑃𝑃 (𝑇𝑇1
𝑝𝑝 |𝐺𝐺1

𝑝𝑝) = log𝑃𝑃 (𝑇𝑇1
𝑝𝑝) −� log𝑃𝑃 (𝑟𝑟𝑝𝑝)

𝑝𝑝

𝑝𝑝=1

+ � log𝑃𝑃 (𝑟𝑟𝑝𝑝|𝐺𝐺1
𝑝𝑝)    (4)

𝑝𝑝

𝑝𝑝=1

 

 

 
Fig.3. HMM model visualization - transition states 

 
Hidden Markov Models conforming to the 

following rule completely or with slight variations 
were widely used in NER. However, as of today 
they are mostly used in combination with other 
techniques. 
 
3.2 Conditional Random Fields 

CRFs are a type of sequence modeling 
techniques that are used for structured prediction 
and have found their neat application inside NER. 
CRFs can be described as discriminative undirected 
probabilistic graph model used to encode known 
relations between the designated observation while 
constructing consistent interpretations. 
A formal definition given by Lafferty, McCallum 
and Pereira [8] states that: 
 
Definition 3: A CRF on observations X and random 
variables Y is defined as follows: 
Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a graph such that,  𝑌𝑌 = (𝑌𝑌𝑟𝑟)𝑟𝑟∈𝑉𝑉 , 
meaning that Y is indexed by the vertices of G. 
Then (𝑋𝑋,𝑌𝑌) is a conditional random field when the 
random variables 𝑌𝑌𝑟𝑟, conditioned on X, obey the 
Markov property with respect to the graph: 
𝑝𝑝(𝑌𝑌𝑟𝑟|𝑋𝑋},𝑌𝑌𝑤𝑤 ,𝑤𝑤 ≠ 𝑟𝑟 = 𝑝𝑝(𝑌𝑌𝑟𝑟|𝑋𝑋},𝑌𝑌𝑤𝑤 ,𝑤𝑤 ∼ 𝑟𝑟, where 
𝑤𝑤 ∼ 𝑟𝑟 means that  w and v are neighbors in G. 
 

Accordingly, we can conclude that CRF is an 
undirected graphical model whose nodes can be 
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explicitly divided into two disjoint sets X and Y and 
the conditional probability distribution 𝑝𝑝(𝑋𝑋|𝑌𝑌) can 
be modeled. 
When applied to the NER task, CRFs share some 
common properties with HMMs. The tokens in the 
text can be conventionally labeled as the 
observation sequence while the named entities 
correspond to the tag sequence. We aim to model 
the conditional probability of a state sequence given 
the observation sequence. It can be mathematically 
described as follows: 

𝑃𝑃(𝑆𝑆|𝑂𝑂) =
1
𝑍𝑍𝑝𝑝

exp���λ𝑘𝑘𝑓𝑓𝑘𝑘(𝑆𝑆𝑟𝑟−1,𝑆𝑆𝑟𝑟 ,𝑂𝑂, 𝑟𝑟)
𝑘𝑘

𝑇𝑇

𝑟𝑟=1

�   (5) 

Where 𝑓𝑓𝑘𝑘(𝑆𝑆𝑟𝑟−1,𝑆𝑆𝑟𝑟 ,𝑂𝑂, 𝑟𝑟) is the feature function 
whose weight λ𝑘𝑘  is tuned during the training 
process. We define the  conditional probability of a 
label sequence based on total probability over the 
state sequences, i.e. 𝑃𝑃(𝑟𝑟|𝑝𝑝) = ∑ 𝑃𝑃(𝑝𝑝|𝑝𝑝)𝑝𝑝:𝑟𝑟(𝑝𝑝)=𝑟𝑟 , 
where 𝑟𝑟(𝑝𝑝) is the sequence of labels corresponding 
to the states in the sequences. 𝑍𝑍0 is the 
normalization factor over all state sequences. 

𝑍𝑍𝑝𝑝 = � exp���𝜆𝜆𝑘𝑘𝑓𝑓𝑘𝑘(𝑆𝑆𝑟𝑟−1,𝑆𝑆𝑟𝑟 ,𝑂𝑂, 𝑟𝑟)
𝑘𝑘

𝑇𝑇

𝑟𝑟=1

�     (6)
𝑝𝑝

 

 
3.3 Neural Networks 

Artificial Neural Networks are one of the most 
prominent tools for binary and multi-class 
classification problems. During several decades of 
development various architectures of NN arouse, 
such as Feedforward Neural Network (FNN - the 
basic ones), Recursive Neural Network (RNN) and 
Convolutional Neural Network (CNN). In this 
section we will overview the basics of the above 
structures. There are many useful and informative 
researches, which thoroughly elaborate on the 
aforementioned architectures [9], that is why this 
paper will be concise on the literature overview. 
The most important concept to understand is a Deep 
Neural Network - this consists of several layers of 
artificial neurons which, in their turn, are basic 
computational nodes. 
 

 
Fig.4. Single artificial neuron. 

 
Each computational node (neuron) gets as an 

input a sequence of numbers 𝑥𝑥𝑝𝑝 . Each 𝑥𝑥𝑝𝑝  is 
multiplied of its corresponding weighting 

coefficient and a bias 𝑏𝑏 is added to the sum of 
multiplications. This sum is given as an input to the 
neural node function, whose result is the final output 
of the neuron. There are several well-known choices 
for a neuron function, such as 𝑟𝑟𝑟𝑟𝑝𝑝ℎ 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑔𝑔𝑚𝑚𝑝𝑝𝑝𝑝𝑟𝑟. A 
single sigmoid neuron can't do much than to classify 
the data into two basic categories with a threshold. 
To create a more advanced classifier numerous 
neurons are combined - creating a layer, and several 
layers combined to form a classic FNN. A standard 
FNN consists of three categories of neural levels, 
i.e. input, hidden and output layers, as depicted 
below: 

 
Fig.5. Multi-layer Neural Network 

 
At the first place, the network is initialized with 

random weights and biases for each neural cell, 
which then are optimized in regards to the error 
function - thus trying to solve the classification 
problem. 

The Convolutional NN is one step advanced in a 
sense that it has additional layers of convolution and 
pooling. Convolutional layers are different from 
ordinary neural layer in a way that each neuron will 
get as an input only a subset of the inputs. The basic 
concept of CNN would be to divide the neurons into 
subgroups, forming feature map - each of the 
subgroup will optimize itself in recognizing a 
specific "feature" in the data. Finally, pooling layers 
are used for filtering out the useless feature map 
subgroups, thus trying to get rid of useless 
"features" for our classifier. 
 
 
4 Problem Solution 

The design of the system created for end-to-end 
Custom Named Entity Recognition can effectively 
be segmented into three sub-modules: Dataset 
Generation, Automatic Annotation and Model 
Training. Let us dive into each of these components 
separately. 
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4.1 Dataset Generation 
One of the main issues during the creation of a 

new custom entity is the lack of understanding of 
what the entity must represent and what ideas and 
concepts it must cover. The viewpoint that we 
maintain is that any entity that can be described with 
a list of words can be completed using their 
synonyms. This intuition is akin to the concept of 
space spanning vectors in linear algebra. The 
descriptor words effectively try to span the concept 
behind the entity we are trying to construct, 
meaning that by creating a dataset comprised of the 
descriptors and their synonyms, we aim to create a 
complete space of ideas and words relevant to that 
entity. For this very purpose we use Word 
Embeddings in order to obtain words similar to the 
descriptors and use pre-processing techniques to get 
rid of irrelevant strings that made their way through 
to the initial dataset. 
 
4.2 Word Embeddings 

Word embeddings are the collective set of 
techniques that try to represent a single word string 
as a vector of some predefined dimension, thus 
creating a string to vector mapping for each of the 
words we are interested in. The most conventional 
methods of embedding today are the word2vec, 
GloVe, FastText and PoincareEmbeddings. 
 

 
Fig.6. Word embedding transformation. 

 
Originally created by Mikolov et al. 2013 [10], 

word2vec was the first neural embedding model that 
is intensely used by the researchers up till this day. 
There a are three different parameter learning types 
that it utilizes. 
• One-word context - We are considering one 

word per one context. This approach is known 
as Continuous Bag Of Words (CBOW). The 
aim is to obtain an appropriate vector 
representation for the word. 

• Multiple word context -Multiple context words 
are considered along the word itself. Here we 
consider the word in relation with other words 
in text. The aim is once again to obtain an 
appropriate vector representation for the word. 

• Skip-gram - The reversed situation of multiple 
word context. Here we try to predict multiple 
context words given one word on the input. 
 

 
Fig.7. One Context Word 

 

 
Fig.8. Multiple Context Words 

 

 
Fig.9. Skip-Gram 

 
GloVe utilizes the structure of the whole 

observed corpus in order to capture the meaning of 
one word embedding. After training on global co-
occurrence counts of words GloVe minimizes the 
least-squares error, consequently obtaining word 
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vectors with meaningful substructure. The design 
sufficiently preserves words similarities with vector 
distance. 

The FastText model takes is quite alike 
word2vec, yet it adds new semantic features into the 
mix. It also considers the internal structure of words 
by splitting them into a bag of character n-grams 
and adding to them a whole word as a final feature. 
The complete set of operations is defined at 
Bojanowski et al [11]. 

The most recent advancement is Poincare's 
Embeddings that uses hyperbolic geometry for 
capturing hierarchical properties of the words that 
are hard to capture in Euclidean space. The use of 
hyperbolic geometry along with the Poincare ball 
allows to obtain and represent an interesting 
property that the distance from the root of the tree to 
its leaves grows exponentially with the addition of 
each new child. The whole optimization process 
with in-depth derivations and definitions can be 
found in the paper Nickel et al [12]. 

Using the aforementioned embeddings, we are 
able to obtain representation and compute similar 
words from those representations, which is the goal 
that we initially had in mind. 
 
4.3 Preprocessing 

It must be noted that even after utilizing word 
embeddings to get a dataset of similar words, we are 
still bound to have irrelevant words in that dataset. 
In order to get rid of them we must filter out the 
extraneous and unrelated words. The task has to be 
automated in order to avoid the time constraints and 
cost of human labor.  

In order to complete this we can start by looking 
into the semantic structure and linguistic features of 
the words. A very simple example of preprocessing 
would be pseudo-deduplication, meaning that words 
that are almost semantically identical with only a 
slight set of differences i.e. "Erik", "Eric" will be 
removed. We can also look into the Part-Of-Speech 
(POS) tags of each word and determine the 
relevance of the word, for example knowing that 
usually adjectives are not a common part of the 
NER task we can delete them. The link to the 
documentation for the complete set of preprocessing 
tools is given in the next chapter. 
 
4.4 Annotation 

As previously mentioned, annotation is a very 
costly task that requires either long hours of human 
labor, or some supervised approaches to complete 
pseudo-annotation. In the system created in this 
research we aim to have a complete annotator 

system that is language independent and thoroughly 
deterministic. 
 
4.4.1 Contextualization 

After generating the raw word dataset of words 
as described in chapter 3, we have to put those 
words in several contexts in order to be able to get a 
trainable dataset for our further steps. We utilize 
several APIs (Reddit, Twitter, news etc.) in order to 
search for relevant sentences and paragraphs inside 
the comments, topics and texts within these 
networks. We try to construct optimized queries 
with adequate amount of filtering in order to retrieve 
the required amount of necessary content. 

After this, the task of annotation shrinks down to 
finding the position of relevant designated sub-
strings in the derived context. 
 
4.4.2 Parallelization 

It must be noted that although the queries to the 
APIs are optimized, completing every request 
iteratively one after another might take a significant 
amount of time and take a heavy toll on the CPU. 
To overcome this issue, we decided to implement a 
parallel computing scheme for the contextualization 
routine.  

Idealistically, the speedup from parallelization 
must be linear, meaning that doubling the number of 
processing cores must split the time of computation 
in half. Yet, very few parallel algorithms achieve 
optimal speedup. Most of them have a near-linear 
speedup for small numbers of processing elements, 
decaying swiftly as the number of processing 
elements increases. The potential speedup of an 
algorithm after parallelization is given by Amdahl's 
law: 

 

𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙 (𝑝𝑝) =
1

1 − 𝑝𝑝 + 𝑝𝑝
𝑝𝑝

    (7) 

• S - the speedup in latency of execution of the 
whole task 

• s - is the speedup in latency of the execution of 
the parallelizable part of the task 

• p -is the percentage of the execution time of 
the whole task concerning the parallelizable 
part of the task before parallelization. 

Since 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙 < 1
1−𝑝𝑝

, it shows that a small part of 
the program which cannot be parallelized will limit 
the overall speedup available from parallelization. 
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Fig.10. Visualization of Amdahl’s Law 

 
We make use of asynchronous threads that work 

concurrently in order to complete the process of 
contextualization in parallel. 
 
4.4.3 CouchDB 

In order to make the collected data editable and 
reusable we chose to create a structured database for 
each of the entities that we aim to create. After 
careful consideration CouchDB was chosen as the 
database system for storing the generated structures. 
Apache CouchDB is easy to use and has a vast focus 
on scalable architecture. It has a document-oriented 
NoSQL database architecture. JSON structures are 
used to store the data, JavaScript is used as the 
primary query language and MapReduce, and HTTP 
are utilized for an API. We must note significant 
difference between CouchDB and relational 
database structures. CouchDB does not store data 
and relationships in tables. Instead, each database is 
a collection of independent documents. Each 
document maintains its own data and self-contained 
schema. 

In order to dive further in the discussion of 
CouchDB let define some key concepts. 
 
Definition 4: Multi-version concurrency control, is 
a concurrency control method commonly used by 
database management systems to provide concurrent 
access to the database and in programming 
languages to implement transactional memory. 
 
Definition 5: Eventual consistency is a consistency 
model used in distributed computing to achieve high 
availability that informally guarantees that, if no 
new updates are made to a given data item, 
eventually all accesses to that item will return the 
last updated value. 

 
It is important to note that CouchDB implements 
both of these concepts, effectively allowing us to 
handle a high volume of concurrent reads and writes 
without conflict. A more in-depth analysis of the 
system can be found at Han et al [13]. 
 
4.5 Training the Model 

After obtaining the contextualized and annotated 
data the most logical last step is to train a model for 
recognizing the designated entity. We make us of 
the Spacy pipeline in order train a Neural Network 
with iterated Dilated convolutions. The architecture 
and optimization of the network is fairly similar to 
the one described by Strubell et al [14]. 
 
4.6 Experiments 

As a benchmark we choose to reconstruct the 
results obtained on classic Entity types PER and 
LOC. The dataset constructed for the task along 
with the full annotation set was able to reproduce 
the SOTA results obtained by  Strubell et al [14] 
with marginal differences across several runs, thus 
proving the feasibility of using the dataset 
generation and annotation module for common 
entities.  

In order to expand the experiment into custom 
entity types we choose to scrape the a set of 
dictionaries for entities that conformed to drugs (i.e. 
cocaine, heroine) and constructed an annotated test 
set for the task. During the dataset generation step 
we decided to use only 2 examples of the type for 
enriching and obtaining the full space that covered 
the entity. We further created an annotated training 
set that was completely independent of the testing 
set. After the completion the NER model was 
trained obtaining 85% on that unknown entity type. 
We further validated that the dataset enrichment 
module was able to produce a set of 
words/sentences that overlapped with the set of 
unique testing words that spanned the space at 93%. 
This proof is sufficient to show that the method 
performed incrementally well on this unknown task 
with sufficient results. 
 
 
5 Conclusion 

During the course of research an end-to-end 
framework for Custom Named Entity Recognition 
was developed. The system is named “Fastent” and 
can be found on GitHub or its very own website. An 
elaborate documentation was derived describing the 
processes of installation and the use of each of the 
sub-modules. The system has been tested on some 
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common NER tasks and the baselines should be 
reported in the documentation after the full scale of 
testing is complete. It must be noted that the 
modules in the system are mostly (only dataset 
generation requires explicit word vectors, which are 
initially supplied to be for English) language 
independent. Although a thorough routine was 
derived for complete custom NER, the system can 
be improved by the addition of Bidirectional LSTM 
models and more model training routines. 
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