
Still Image Compression using Angular Domain: Analysis and FPGA 
implementation 

 
PRAVIN B.POKLE1, DR. N.G.BAWANE2  

1Research Scholar, Member IEEE, 2Principal and Senior Member IEEE 
1B.D.College of Engg, Nagpur University, 2S.B.J.I.E.M.R., Nagpur University 

INDIA 
1pbpokle@rediffmail.com, 2ngbawane@gmail.com 

 
Abstract: - Image compression is a method of reducing the image size by reducing the redundancy between pixels in 
an image without degrading the quality of image so that it can store more images in a given amount of disk or 
memory space and also it tends to reduce the time required to send the images over the network. Many hardware 
efficient techniques exists for image compression, inspired from it, this paper presented an image compression 
technique based on the pixel-wise fidelity and its FPGA implementation. Proposed method is used to reduce bit rate 
of the pixels for better image compression by using angular transformation. This paper presents a hardware efficient 
FPGA architecture using angular domain concept based on CORDIC algorithm. In this paper, the architecture is first 
simulated in MATLAB for calculating PSNR, MMSE and compression ratio and then it simulated and synthesized 
using Xilinx ISE tool and verify the parameters such as area, power and delay required for compressing the image 
with visual appearance of the output compressed image finally the codes are targeted onto suitable FPGA. 
 
Key-Words: - Image compression, Angular transformation, VHDL, FPGA, CORDIC, Fidelity, Bit plane slicing, 
MMSE, PSNR, RTL.  
 
 

1 Introduction 
 

In day to day life, image compression is very essential 
for transmission and storage of data. Recently, many 
researchers have been proposed different techniques and 
algorithms for image compression such as JPEG, MPEG 
and H.263 so as to improve the performance measures in 
last decades in order to achieve the better performance 
and quality. The key factor in image compression is to 
remove similar pixels by discarding the redundant pixels 
in an image [1].Almost all the methods proposed are 
either define in frequency domain or in time domain. 
The major drawback of using frequency domain is that 
the low frequencies pixels are discarded whereas the 
time domain reduces the size of an image this will 
degrade the visual appearance of the image [2].  
However every algorithm has its advantages and 
disadvantages due to nature of each scheme. Amongst 
all the schemes proposed till now are based on discrete 
cosine transform. Vector Quantization is the recent 
technique developed for image compression. The 
performance of VQ is directly proportional to the vector 
size and codebook size [3,4]. This means with increase 
in vector size, the codebook size also increases which 
results in exponential increase in encoding complexity. 
On the other hand, microprocessor and microcontroller 
based systems can process image data very easily with 

less complexity, but these are not able to target onto 
actual hardware. Thus the efficient technique is come 
into existence using HDL [5]. In this paper, a hardware 
efficient FPGA architecture scheme based on angular 
transformation is proposed for better image 
compression. In this scheme angular position of each 
pixel under a sine wave is considered by converting 
every pixel into angle by using CORDIC algorithm. For 
achieving further compression of image data, bit plane 
slicing is used. The main objective of this paper is to 
develop an efficient hardware on FPGA chip for 
compression of an image using angular domain in order 
to optimize area, power and delay and to achieve high 
compression ratio without degrading the original image 
quality. 
 

2 Proposed method 
 
This paper proposes a new concept for image 
compression using angular transformation based on 
CORDIC (coordinate rotation digital computer) 
algorithm. The compression is achieved in three steps 
i.e. angular transformation using CORDIC, divider 
block and Bit plane slicing. Before processing an input 
image for HDL simulation, first to convert all pixels into 
text IO file format and stored it into memory block in 
which all the pixels are properly arranged so that further 

Pravin B.Pokle, N.G.Bawane
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 145 Volume 2, 2017



it will process pixel by pixel. Figure 1 below shows the 
complete top level image compression system. 
 
  
 I/P img.                                                                                                       o/p 
 
 

       Fig.1: Top level entity for proposed scheme. 
 

In proposed scheme, the input image is first stored in 
memory block in column and row matrix form because 
VHDL language cannot read image directly. It needs to 
convert first the image data into equivalent text I/O file 
format. In which if column matrix is equal to row matrix 
is greater than the size of image then go to the next row, 
thus we get the pixel wise image data in readable 
form[6]. Now this data is process pixel by pixel for 
converting into corresponding angle using one element 
processor. Once one element processor has finished 
processing all pixels then output writer could write the 
image into file after output. This will results in 
compression of image at the output. 
In this paper the top level block is further divided into 
smaller subsystem so that it can be easily implemented 
on FPGA. 
 
2.1 Memory Block 
 
The block diagram of the memory block shown in the 
figure 2. 
 
 
 
 
 
 
 
 
                                                                Yes 

 
 
                                          No 

 
 
 
 
 
 
 
 
 
 

Fig. 2 Block Diagram of memory block 
 
In memory block the input image for the compression is 
passed. Image is created with the multiple pixels. For the 

angular transformation we required single pixel by pixel 
input. In memory block the image is decomposed in the 
number of rows and columns according to the pixels 
resolution of the image. For every column and row pixel 
first check whether its size is greater than size of image, 
if it’s true then go to next row for the column and repeat 
the process and if the size of pixel is less then image size 
then save the value of pixel in memory and pass this 
pixel to the one element processor for the angular 
transformation process.  
 

3 System  block diagram 
 
Top level entity is further divided into subsystem as 
shown in figure 3 below: One element processor 
consists of sine coder, divider block and bit plane 
slicing.  
 
                                                          One element processor 
I/P image 
   

                              

                                                             
                                                                    
 
                                                                       Compressed Image    

       Fig.3:   Complete Image Compression. 
 

In this work, the CORDIC processor is used to achieve 
angular transformation in VHDL for converting pixels 
into respective phase angle then performs division so as 
to reduce bit rate and finally bit plane slicing is used for 
further compression of image at the compressor. 
 
3.1 Angular transform  

 
As we know, the sine transform has the property that for 
two different angles, it has same gray level value.i.e. 
Pixels at an angle 890 an 910 have the same gray level 
value: 
 
       i.e. sin x   ,- 

గ

ଶ
൑ 	ݔ ൑ 		

గ

ଶ
 		                       ..............(1) 

 
For the assigned sequence P(n), angular transform is 
given by: 

   			ܲሺ݆ሻ ൌ ට ଶ

ேାଵ
∑ ሺ݅ሻே݌
௜ୀଵ ݊݅ݏ

௝௜గ

ேାଵ
																		............. (2) 

 
In this work first all the pixels are converting into 
corresponding angular values under sine wave which 
tends to reduce the one bit and hence it needs seven bits 
instead of eight bits to represent an image. 

Memory 
Block 

Sine coder 
Using 
CORDIC 

Divider 
block (÷ 1.5) 

Bit plane 
slicing 

Memory    
Block 

One Element   
Processor 

O/P writes 
to file 

Column 
Counter and 
Row counter 

Adder 

If col ||row > 
size of image 

Go to next 
row 

Memory 

o/p 

O/P write 
to file 

Pravin B.Pokle, N.G.Bawane
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 146 Volume 2, 2017



         
Fig. 4: Sine wave of the Normalized image 

 
3.2 Cordic algorithm 
 
CORDIC, Coordinate rotation digital computer is a fast 
and efficient algorithm for trigonometric calculations. 
The algorithm was first proposed by Jack E. Volder [7]. 
It has two modes (vector mode and rotation mode) and 
has three resisters, namely P, Q and Z (Angle). In this 
paper, rotation mode is use to find sine or cosine of an 
angle iteratively using simple arithmetic such as add, 
subtract, shift ,compare table look-up. In this the resister 
Z is used to stored the angle whose sine or cosine is 
found and resisters P and Q are set to 1 and 0 in order to 
represent horizontal vector. The angle in Z is changed 
successively smaller steps with a view to finally make it 
zero. The corresponding rotation of the vector can be 
represented after updating P and Q register with each 
change in Z. After sufficient iterations, Z nearly equal to 
0 and register P represent cosine and register Q represent 
Sine of the original angle [8]. 
On the other hand the vector mode is used to find arc 
tangent of the number. In this the Z register is set to 0 
and P and Q registers are initialized such that tan  = 
Q/P, where  is the corresponding angle. After 
sufficient iterations Q becomes 0 and Z contains. 
Figure 4 shows the relation between angle of rotation 
and corresponding change in x, y coordinates. From the 
figure it is seen that at an angle 1 the vector is 
originally inclined to the x axis. This will results in p1 
and q1 coordinates respectively [9]. Further it is rotated 
by an angle  in a counter clockwise direction so that it 
is now inclined to x axis at an angle 2.Thus the new 
coordinates are p2 and q2 respectively. 

         
              Fig.4: Coordinate rotation 

Now as per the trigonometric equation for sin(P+Q) and 
cos(P+Q): 

         P2 = P1 *cos()  Q1 *sin()                 ……….(3) 

         Q2 = P1 *sin() + Q1 *cos()                ……….(4) 
This becomes, 
         P2 = cos() * [P1 Q1 * tan() ]             ..……..(5) 

        Q2 = cos() * [P1 * tan() + Q1 ]            ..……..(6) 

In rotation mode, the initial angle is  which can be 
rotated in steps i to become 0. Now at ith  step, choose 
tani as a fractional power of 2 such that we can replace 
multiplication by  tan() by right shift. Thus we have, 

          i = tan -1(2-i)                                         ………(7) 

Here multiplication by cos() tends to a constant value 
K irrespective to the initial values of P,Q and Z thus we 
can ignore it.Where K is defined as: 

K=cos(tan-1(2-0))*cos(tan-1(2-1))*cos(tan-1(2-2))* …...(8) 

               K= ∏
ଶಿ

ඥଵାଶమಿ
∞
ேୀ଴  =0.607                      .……(9) 

Thus if we consider cosine is equal to pin, sine equal to 
qin and angle equals to zin then iterations per pixels are as 
follows: 
              Q = q = 0, P = p = 0.607 and Zin=  Then 
               p0 = pi + q when Zin  0 else pi – q 
               q0 = qi - q when Zin  0 else qi + q 

The architecture required for one step cordic iteration is 
shown in figure 5.  

 

        Fig.5: one step cordic iteration  
 
Depending upon the number of iterations required for a 
given image above architecture is required in pipelined 
manner. In VHDL it can be done with the help of 
generate statement by simply passing generic parameter 
which is equal to the number of iterations as shown in 
following figure. 

Pravin B.Pokle, N.G.Bawane
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 147 Volume 2, 2017



 
Fig.6:  N step cordic iteration 
 
This means that multiplying by K tends to initialized X 
with  
0.607 Instead of 1. Thus all pixels are converted into 
angular values in the range 0 to 90 degrees [10]. 
By iteratively rotating   towards, sin-1 () can be 
calculated 
Step1. Set  = 450 

Step2. If  >=  then  

                =  + (45/2)0 else 

                =  - (45/2)0   

Step3. If  >=  then  

                =  + (45/4)0 else 

                =  - (45/4)0   

Continue by halving step size 

For example, if we consider 5 x 5 image as shown 
below: 

              Pij ൌ

ۏ
ێ
ێ
ێ
ۍ
180		200		197		250		198
165		243		176		199		220
120		189		221		245		195
180		176		229		212		147
ے189		178		172		134		167

ۑ
ۑ
ۑ
ې

 

 

After sufficient number of cordic iterations, all the gray 
level values are get converted into corresponding 
angular values. Thus the resulting matrix is given as: 
 

            Qij′ ൌ 	

ۏ
ێ
ێ
ێ
46ۍ

°		55°		52°		90°		52°

51°		76°		44°		52°		62°

29°		48°		62°		78°		51°

46°		44°		65°		58°		36°

ے48°		45°		44°		32°		42°
ۑ
ۑ
ۑ
ې

 

 
Here Pij is the gray level values of pixels in an image 
and  Qij ′		 is the respective angular values. Thus for 
representing the original image the value of pixels are 0 
to 255 which requires 8 bit, but after applying the above 
algorithm, it will requires only 7 bits for representation 
as it have the angular values from 0 to 90[11]. 
 
3.3 Reduction of bit rate of Qij′ 	image: 
 
For further compression of an image the output is again 
processed by divider block so that it will convert the 
image into 6 bit form for further compression, we now 
divide the image by 1.5 because the range of  0 to 90 
after division will become 0 to 60  this will reduce the 
bit rate of the image[12].  

Thus we have;  Qij" ൌ	  
ொ೔ೕ
ᇲ

ଵ.ହ
	                                   ……………(10) 

 

                      Qij"   =			

ۏ
ێ
ێ
ێ
31ۍ

°		36°		34°		60°		34°

34°		50°		29°		34°		41°

30°		21°		27°		34°		22°

30°		29°		43°		38°		24°

ے32°		30°		29°		21°		28°
ۑ
ۑ
ۑ
ې

 

 
This will results the maximum value of angle is 60, for 
which 26 = 64 and hence we can represent it in 6 bits. 
 
3.4 Bit Plane Slicing  

 
In this approach, a bit plane slicing is used for further 
compression of an image. Using one bit plane or two bit 
plane slicing the output is further compressed. A bit 
plane is a set of bits corresponding to a given bit 
position in each of the binary numbers in an image. It is 
used to determine the adequacy of numbers of bits used 
to quantize each pixel in the image [13].  
 

Pravin B.Pokle, N.G.Bawane
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 148 Volume 2, 2017



        

Fig.7: Bit Plane Slicing for 8 bit image 

From figure 7, it is seen that instead of highlighting gray 
level images, it is desired to highlight the contribution 
made to total image appearance by specific bits. 
Suppose that each pixel in an image is represented by 8 
bits[14]. Now assume that the image is having eight, 1-
bit planes ranging from bit plane1-0 (LSB) to bit plane 7 
(MSB).  
In Qij" we have 6 bit image in compressed form, now we 
apply the bit plane slicing technique on Qij"	image. 
In Qij"ሺ1,1ሻ the gray level pixel with value 46(00101110) 
will be present in the 6th, 4th, 3rd and 2nd bit plane. After 
applying 2 bit plane slicing and 1 bit plane slicing on the 
binary number we get image in 4 bit and 5 bit form as 
shown below.  
 
             46           101110             1011 (4 bit form)    
              
             46           101110             10111(5 bit form)    

 
Fig. 8: 1bit, 2 bit bit plane slicing 

 
Suppose the original 8 bit input image is of size 100kb. 
So when we apply the 0 bit bit plane slicing on Qij" 
image the output image will be 2/8 of the original image 
i.e. we are able to compressed the size of image to 25%. 
For 1 bit bit plane slicing the output image will be 3/8 of 
the original image i.e. we are able to compress the image 
to 37.5%. For 2 bit bit  plane slicing the output image 
will be 4/8 of the original image i.e. we are able to 
compress the image to 50%.Thus in this proposed 
method we are able to compressed an image upto 
50 %[15]. 
 
 
 

4 Modeling Results 
 

The proposed work is develop in two parts, MATLAB 
codes for simulation and for verifying PSNR, MSE and 
compression ratio and compare the results with other 
existing methods such as DCT, Huffmans, RLE and 
Wavelet with different filters. Another set of experiment 
involves FPGA implementation in which we perform 
simulation and synthesis using Xilinx ISE for the 
verification of area, power and delay of the proposed 
method. The set of experiments evaluate the effect of 
different methods on the quality of the reconstructed 
image. Experiments were conducted using the standard 
data base such as images ‘lena’, ‘Football’ and 
Cutebaby. The performance measures for analysis used 
is mainly Mean square Error (MSE), Peak Signal to 
Noise Ratio (PSNR), Compression Ratio and Image 
Quality[16]. Where MSE is the cumulative squared error 
between the compressed and the original image. 
Whereas PSNR is a measure of the peak error. For 
evaluating mean square error and peak signal to noise 
ratio we use the following formulae. 

           MSE =			
ଵ

௑௒	
 ∑ .௑

௜ୀଵ ∑ ሺ௒
௝ୀଵ  Qij - Qij”) 2    ............(11) 

 

           PSNR = 20* log 10 (
ଶହହ

√ெௌா
)                    .……..(12) 

Where Q(i,j) is the original image and Q(i,j)” is the 
compressed  version of the image and X,Y are the 
dimensions of given image, 255 is the peak signal value. 

                               
  Fig.9:(a)                                     (b)                                   (c) 
 

                
              (d)                                    (e)                                 (f) 
Figure 9: (a) Original lena image  (b) Reconstructed 
image using DCT (c) Reconstructed image using RLE (d) 
Reconstructed image using Huffmans (e) Reconstructed 
image using wavelet dB2 filter (f) Reconstructed image 
using proposed method. 
 

Pravin B.Pokle, N.G.Bawane
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 149 Volume 2, 2017



                 
Figure10: (a)                       (b)                           (c) 
 

                
             (d)                            (e)                           (f) 

Figure 10: (a) Original Football image  (b) Reconstructed image using DCT (c) Reconstructed image using RLE (d) 
Reconstructed image using Huffmans (e) Reconstructed image using wavelet dB2 filter (f) Reconstructed image 
using proposed method. 
                 
 

                                
Figure11: (a)                     (b)                           (c)                            (d)                          (e)                           (f) 
     
Figure 11: (a) Original Cutebaby image  (b) Reconstructed image using DCT (c) Reconstructed image using RLE (d) 
Reconstructed image using Huffumans (e) Reconstructed image using wavelet dB6 filter (f) Reconstructed image 
using proposed method. 
 

Table1:  Comparison of results for different images using MATLAB 
 

 Parameters DCT 

 

RLE Huffman Wavelet 

(dB2/dB6) 

Proposed 

Method  

Image 1 

LenaImage 

 

MMSE (dB) 3.75 26.52 25.26 2.62 1.29 

PSNR (dB) 42.39 23.84 23.70 43.93 45.89 

Compression Ratio (%) 74.90 47.22 7.7 12.16 50 

Time Elapsed (s) 0.11 0.13 0.32 1.89 0.085 

Image 2 

Football 

 

MMSE (dB) 1.04 37.32 39.90 2.07 0.67 

PSNR (dB) 47.98 27.96 27.92 44.96 51.54 

Compression Ratio (%) 64.12 48.79 16.98 48.72 50 

Time Elapsed (s) 0.55 0.25 0.43 0.79 0.041 

Image 3 

Cutebaby Image 

 

MMSE (dB) 1.35 40.21 38.32 12.73 0.245 

PSNR (dB) 46.82 20.11 20.82 37.08 60.31 

Compression Ratio (%) 72.70 48.76 15.54 28.55 50.28 

Time Elapsed (s) 0.58 0.19 0.45 2.54 0.039 

                                                

                                                                                     
 
  

Pravin B.Pokle, N.G.Bawane
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 150 Volume 2, 2017



Figure 12 shows the compressed images after VHDL 
simulation for the proposed architecture applied on 
different standard test images. After simulation the 
proposed method is synthesized using Xilinx ISE 
suite13.2 and tested it on Spartan-3 FPGA. Figure 13 
shows the RTL (register transfer level) level diagram for 
proposed scheme and Table 2 shows the micro statistics 
of the proposed method. Figure 14 shows the simulation 
waveforms for proposed method. 
 

Table 2: Micro statistics using Spartan 3 FPGA 
 

 
 
 
  

   
               (a)                                   (b)                                    (c) 
 
Fig.12: Compressed images after VHDL simulation. 
Figure (a) represents compressed Lena image (b) 
compressed Football image (c) compressed cutebaby. 

    
 
 
 

 

 
               Fig.13: RTL level diagram for proposed method after synthesis using Xilinx ISE tool. 
 

Method Proposed DCT 

Parameters

No.of ROM 1 2 

Multiplier 1 1 

Add/Sub 43 36 

No.of Slices 66/768 75/768 

Registers 16 24 

Power(mW) 0.18 0.27 

Delay(nSec) 6.216 13.714 

Pravin B.Pokle, N.G.Bawane
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 151 Volume 2, 2017



 

                                                                Fig.14: Simulation waveforms for proposed method 

 

5 Conclusion 
 

This paper proposes a new method based on angular 
domain using CORDIC algorithm. The propose work is 
develop in MATLAB as well as in VHDL. In first set of 
experiment the algorithm is simulated for MMSE, PSNR 
and compression ratio using MATLAB. The results are 
compared with standard existing methods such as DCT, 
RLE, Huffmans and Wavelet with dB62 and dB6 filters. 
From the results it is observed that the proposed method 
works very efficiently and effectively and the results 
obtained are extremely good. The proposed method able 
to compress an image 50.00 % which is a very high 
compression rate. Also the visual quality of output 
image is intact and hence is exactly as same as input 
image. Moreover, the Peak Signal to Noise ratio (PSNR) 
value obtained is very high and is in between 50 dB to 
60 dB and minimum mean square error (MMSE) value 
is very low and comes out to be 0.245 for image 
cutebaby.  The other set of experiment shows the VHDL 
simulation and synthesis for analyzing area, power and 
delay for the proposed method. Table 2 summarizes the 
Micro statistics of proposed method using Spartan 3 
FPGA the results of the proposed method is compared 
with standard DCT. It is seen that the propose method 
consumes very small power of 0.18 mWatts with only 
one ROM. Also the proposed method consumes only 9% 

of total area with small delay of about 6 nSec. Moreover, 
from the table 1 and table 2, it is clear that performance 
measures obtained are very good enough to show the 
high success rate of the research being done by means of 
this paper. 

 
References 
 

[1] M. Tuceryan and A. K. Jain, “Texture analysis,” in 
The Handbook of   Pattern Recognition and 
Computer Vision, C. H. Chen, L. F. Pau, and  P. S. 
P. Wang, Eds., 2nd ed. Singapore: World Scientific, 
1998, pp. 207–248. 

[2]     D.Malarvizhi, Dr.K.Kuppusamy, ”A new entropy 
encoding algorithm for image compression using 
DCT”, International Journal of               
Engineering Trends and   Technology- 
Volume3Issue3- 2012. 

[3] S. Rooij, P. Vitanyi, “Approximating Rate-
Distortion Graphs of individual Data: Experiments 
in Lossy Compression and Denoising”, IEEE 
Transaction on Computers, vol.61, N° 3, March 
2012, pp. 395-407.  

[4]  Harjeetpal singh, Sakhi Sharma, “Hybrid Image 
Compression Using DWT, DCT & Huffman 
Encoding Techniques”, International Journal  of 
Emerging Technology and Advanced Engineering,  

Pravin B.Pokle, N.G.Bawane
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 152 Volume 2, 2017



ISSN 2250- 2459, Volume 2, Issue 10, October 
2012. 

[5] Shantanu D. Rane and Guillermo Sapiro, Member, 
IEEE,”Evaluation of JPEG-LS, the New Lossless 
and Controlled-Lossy Still Image Compression 
Standard, for Compression of Hi gh-Resolution 
Elevation Data ”, IEEE Transactions on Geoscience 
and Remote sensing, VOL. 39, NO. 10, Oct. 2001 

[6] Ali M. Reza, Robert D. Turneyi, “FPGA 
Implementation of 2D Wavelet Transform”, IEEE 
Trans. On Pattern recognition-0-7803-5700-
000,1999 

[7] J.Holder,”The CORDIC trigonometric computing 
technique”,IRE trans. Electron. Comput. Vol.No.8, 
pp-330-334, 1959  

 [8] S.S.Limaye,”VHDL-A design oriented approach”, 
The Mc-Graw-Hill  companies, 5th reprient 2011  

[9] Chih-Hsiu Lin, “Mixed-scaling-rotation CORDIC 
(MSR-CORDIC) algorithm and architecture for 
high-performance vector rotational DSP 
applications”, Regular Papers, IEEE Transactions 
on  Circuits and Systems (Volume:52 ,  Issue: 
11,2012 ) 

 [10] Loay E. George and Azhar M. Kadim, “Color 
Image Compression Using Fast VQ with DCT 
Based Block Indexing Method”, ICIAR 2011, part 
II, LNCS6754, pp.253-263, Springer-Verlag Berlin  
Heidelberg 2011 

[11] M. Tuceryan and A. K. Jain, “Texture analysis,” in 
The Handbook of Pattern Recognition and 
Computer Vision, C. H. Chen, L. F. Pau, and P. S. 
P. Wang, Eds., 2nd ed. Singapore: World 
Scientific, 1998, pp. 207–248. 

[12] Sung-Hsien Sun and Shie-Jue Lee, “A JPEG Chip 
for Image Compression and Decompression”, 
Journal of VLSI Signal Processing 35, 43–60, 2003 

[13] Mr. N S T Sai and R.C.Patil,”Image retrieval using 
Bit plane pixel distribution”, International Journal 
of computer science and Information tech.,Vol 3, 
June-2011. 

[14] Kadono, S, Tahara O and Okamoto N (2001) 
“Encoding ofcolor still pictures wavelet transform 
and vector quantization”, Canadian Conference on 
Electrical and Computer Engineering 2:931–936.  

 [15] B. Krill, A.Ahmad, A.Amira, H.Rabah, “An 
efficient FPGA-based dynamic partial 
reconfiguration design flow and environment for 
image and signal processing IP cores”, Signal 
Processing: Image Communication 25 (2010) 377–
387 Elsevier. 

[16] Kalaiyarasi .K, Deepika .S et al, “Fast DCT 
Computation Using Cordic Algorithm for Image 
Processing Application” ,International Journal for 
Research  and Development in Engineering pp- 
342-347-2014 

 

  

Pravin B.Pokle, N.G.Bawane
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 153 Volume 2, 2017




