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Abstract: In this paper, we investigate target detection based on the different relevance of sea clutter with a deep
learning approach. The proposed method employs deep convolution autoencoder (CAE) to learn the necessary
features and classification boundaries using the simulated data without employing any explicit features on the
pulsed radar signals. Compared with conventional methods for sea clutter suppression, our algorithm do not need
to estimate the covariance matrix of clutters. Specifically, we can automatically remove complex patterns like
superimposed clutter from a target, rather than simple patterns like pixels missing at random. The results show that
the proposed deep learning approach has very reliable detection performance compared with space-time adaptive
processing (STAP), even at low signal-to-clutter ratios.
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1 Introduction
When a radar detects targets on or above the sea sur-
face, it has to overcome the interference from sea echo
itself. For many diverse factors, such as radar po-
larization mode, antenna visual angle, sea state and
wind direction, clutter is obviously non-Gaussian and
non-stationary, which limits the detection capability
of radar [1]. Traditional radar systems have adopted
adaptive processing techniques such as constant false
alarm rate (CFAR) detectors [2], adaptive arrays, and
space-time adaptive processing (STAP) to mitigate the
deleterious effects of clutter and jamming[3]. Typ-
ically, in adaptive radars the disturbance covariance
matrix is estimated using training data collected from
cells surrounding the cell under test (CUT).

However, all these estimators are based on the as-
sumption that the training data vectors do not con-
tain interference or targets sharing the same covari-
ance matrix as the primary data. These techniques
are quite restrictive since they require the environ-
ment to remain stationary and homogenous during
their adaptation. In fact, the training data vectors are
often contaminated by interfering targets, large clutter
discretes, spiky clutter, and other outliers of different
types rendering them nonhomogeneous[4]. The con-
ventional involved algorithms cannot satisfy the re-
quirements for higher accuracy and more flexible ap-
plications. Therefore, it is eagerly to develop a more
effective approach to increase the signal-to-clutter ra-
tio and enhance the detection performance.

During the last decade, inspired by the architec-
tural depth of the brain, deep learning has become a
new kind of machine learning method and has been
paid increasing attention to[5][6]. The algorithms
seek to exploit the unknown structure in the input dis-
tribution in order to discover better representations,
with higher level learned features defined in terms of
lower level features. Recently, deep learning has ob-
tained state-of-the-art results in the area of computer
vision and speech recognition. In the field of radar
signal processing, using the concepts of deep learn-
ing, several new approaches [7, 8, 9] have been pro-
posed. Jarmo [7] employed deep convolutional neu-
ral networks (DCNNs) to target recognition based on
high range resolution profiles (HRRPs) in multistatic
radar systems. Kim [8] has developed the use of DC-
NNs for human detection and activity classification
based on Doppler radar. In[9], Gong proposed a novel
change detection algorithm specifically toward ana-
lyzing multi-temporal synthetic aperture radar (SAR)
images based on deep learning. Experiments on real
data sets and theoretical analysis indicate the advan-
tages, feasibility, and potential of deep learning meth-
ods. However, most proposed methods ,applying deep
learning to the field of radar, are based on the SAR
images or the spectrograms of echo doppler, which
are essentially in the image level. The main innova-
tive point of our work is directly using deep learning
algorithms in radar echo data.

It has been shown in the literature that each
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bounded continuous function can be approximated
by a two-layer neural network with arbitrarily small
errors, and any function can be approximated with
an arbitrary precision using a three-layer neural
network[10]. It can be said that as long as the problem
can be expressed as a function of the form, theoreti-
cally we can consider deep neural networks as a tool
of learning.

In this paper, we present an algorithm for clut-
ter suppression task that combines sparse coding and
deep networks pre-trained with denoising convolu-
tional auto-encoder defined by this model, and show
that by training on large radar echo databases we are
able to outperform the current adaptive processing
techniques. The algorithms will first learn a large
number of basis functions, and then reconstruct any
new input radar echo using a weighted combination
of a few of these basis functions. The weights of these
basis functions then give a slightly higher-level and
more succinct representation of the input, then this
representation can be used in target scene restoration
task.

The rest of of this paper is organized as follows.
Section 2 introduces the pulsed radar detection model
and describes the testing environment. In Section 3,
the overall architecture and components of our convo-
lutional auto-encoder are proposed in detail. Results
are shown in Section 4 to demonstrate the effective-
ness of the proposed approach. And conclusions are
drawn in Section 5.

2 Signal Amid Clutter Model for
Pulse Radar

In this section, we present a mathematical model for
targets and sea clutter returns. The relevance of sea
clutter between different range and azimuth units is
strong. Since the target usually exists in 1 or 2 units,
its amplitude is much smaller than that of sea clutter.
If s(t) is the signal transmitted in each pulse, the re-
ceived signal in the kth pulse, k = 0, 1, ...,K − 1, is
given by:

gk(t)=σks(t−τ0)ej2πυ0t+
∑
i

xki s(t− τi)ej2πυit+n(t)

(1)
where σk, τ0 and υ0 are the complex reflectivity, de-
lay and Doppler shift, respectively, of the target (if
present), τi and υi are the delay and Doppler shift
of the ith scatterer, respectively, and n(t) is additive
noise. Note that the complex reflectivity of each scat-
terer fluctuates randomly with each pulse. This is due
to the fact that small changes in range, on the order of
the radar wavelength, may cause significant changes

in the phase of the received signal. In the scenario we
consider, the interference due to clutter dominates the
additive noise and we will henceforth neglect the lat-
ter. Also, we will focus on range estimation alone; the
extension to include Doppler estimation is the subject
of ongoing research. The received signal in (2) is sam-
pled at a rate fs to yield a sequence gk[n] = gk(n/fs).
This sampled signal is then matched filtering at each
sampling instant to yield the sequence.

The movement of ships in the sea is very com-
plex, and the disturbance from wind and wave will
also become more obviously. Therefore, we can not
assume a constant target radar cross section (RCS)
(non-fluctuating target) when we simulate the ship tar-
get. In this paper, target fluctuations are modelled us-
ing the Marcum-Swerling IV distribution for the tar-
get returns[11]:

f(σ) =
4σ

σ̄2
exp(

2σ

σ̄
) (2)

where σ represents the RCS of targets.
Early studies of detection and waveform design

for sea clutter rejection typically assumed Rayleigh
model, log-normal model or Weibull model for sea
clutter echoes, which all are based on single point
statistics [12]. With modern radars, however, the reso-
lution is high enough to resolve the small-scale struc-
ture of the sea surface. In this scenario, those tradi-
tional models, which derive from the application of
the central limit theorem to a large number of indepen-
dent scattering centers, are no longer appropriate and
cannot account for the increased presence of spikes
in the returns. This has motivated the K-distribution
model [13] for sea clutter whose returns are believed
to be the result of two processes. The first process
is called speckle, which is the result of reflections of
the incident beam by multiple independent scattering
centers, whose variance follows the Gamma distribu-
tion in time-space field. The second process, termed
texture, is caused by the large-scale structures of the
sea such as swell and wind, and modulates the local
mean power of the speckle.

The K-distribution model has received empiri-
cal as well as theoretical support. It has long been
known that sea clutter echoes exhibit temporal and
spatial correlation. In particular, the speckle decorre-
lates rapidly (1-5 ms), while the texture remains corre-
lated over several seconds. In practice, the correlation
properties of the clutter are determined by the speckle
component. The clutter intensity of the K distribution
can be expressed as

P (z) =

∫ ∞
0

P (z|x)Pc(x)dx (3)
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where
P (z|x) =

1

x
exp(−z/x) (4)

and

Pc(x) =
bvxv−1

Γ(v)
exp(−bx) (5)

Equation (5) is the Gamma distribution for the local
clutter power x. The b is the scale parameter, which
reflects the average power characteristics of the echo.
And the shape parameter is v (always between 0.1 to
10), which reflects the skewness of K distribution.

Table 1: World Meteorological Organization sea state

Code Wind Speed(m/s) Characteristics

0 0.0-0.2 Calm (glassy)

1 0.3-1.5 Calm (rippled)

2 1.6-3.3 Smooth (wavelets)

3 3.4-5.4 Slight

4 5.5-7.9 Moderate

5 8.0-10.7 Rough

6 10.8-13.8 Very rough

Taking sea state into consideration is of pri-
mary importance to clutter suppression, as high waves
and confused seas can easily swamp a vessel. The
world meteorological organization uses different wind
speeds (Beaufort wind force scale) and wave heights
to measure different sea states [14]. Since wind is the
main factor affecting sea states, in the following work,
we will use the K-distribution simulate different sea
states by setting different wind speeds. As shown in
Table I, we ignore the heavy sea swell and take the
low and moderate sea clutter into the training set of
deep learning architecture, which is proposed in the
next section.

3 Architecture of Autoencoder
Firstly, we briefly specify the traditional auto-
encoder(AE) framework and its terminology. Let yi
be the original data for i = 1, 2, ..., N and xi be the
corrupted version of corresponding yi. The determin-
istic mapping σ(.) that transforms an input vector x
into hidden representation hi, always at a typically
lower-dimensional space, is called the encoder. Its
typical form is an affine mapping followed by a non-
linearity:

h(xi) = σ(Wxi + b) (6)

Figure 1: Architecture of the proposed framework.

The resulting hidden representation hi is then mapped
back to a reconstructed N -dimensional vector yi in
input space. This mapping is called the decoder. Its
typical form is again an affine mapping optionally fol-
lowed by a squashing non-linearity, that is,

ŷ(xi) = σ(W′
h(xi) + b′) (7)

where Θ = {W,b,W′,b′} represents the weights
and biases. Once a layer is trained, its code is fed to
the next, to better model highly non-linear dependen-
cies in the input. The autodecoder can be trained with
various optimization methods to minimize the recon-
struction loss:

θ = argmin
θ

N∑
i=1

‖yi − ŷ(xi)‖ (8)

By using multiple layers of encoder and decoder,
the autodecoder can form a deep architecture and be-
come a Deep Denoising Auto-encoder (DAE) [15].
Fully connected AEs and DAEs both ignore the 2D
signal structure. This is not only a problem when
dealing with realistically sized inputs, but also in-
troduces redundancy in the parameters, forcing each
feature to be global (i.e., to span the entire visual
field). However, the trend in vision and object recog-
nition adopted by the most successful models is to
discover localized features that repeat themselves all
over the input. CAE differs from conventional AEs
as their weights are shared among all locations in the
input, preserving spatial locality. The reconstruction
is hence due to a linear combination of basic signal
patches based on the latent code.
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The architecture of our convolutional auto-
encoder, as shown in Fig.1, is composed of several al-
ternations of convolution and pooling layers, followed
by several fully connected layers on the top. The rich
nonlinear structure in the CAE can be used to learn
an efficient transfer function which removes clutter
in radar signal while keeping enough discriminative
information to generate good reconstructed features.
Unlike patch-based methods [16], we preserve the in-
puts neighborhood relations and spatial locality in our
latent higher-level feature representations.

4 Results and Related Analysis
In this section, we demonstrated the performance of
pulsed radar when using the proposed deep learning
architecture in the background of sea clutter. We con-
sidered a ground based radar system with ship tar-
gets moving in the K-distributed clutter of different
sea states. Our training set included six species of
sea states (according to Beaufort scale) simulated by
K distribution, the clutter scene were shown in Fig.2.
The scattering coefficient of the target was obedient to
Marcum-Swerling IV statistical properties. We sim-
ulated a large training set, hundreds of thousands of
radar signal containing targets were collected, includ-
ing different sea states, target types, target trajectories
(input dimensionality d = 80 × 100). The diversity
render the problems particularly challenging for cur-
rent generic learning algorithms. The signal images
of time and space field were shown in Fig.3.

In this paper, we used the radar echo signals as
the training data of the CAEs network. Only an es-
timate of the magnitude of radar signal was required
here. Note that all the training data and test data were
all normalized to zero mean and unit variance. This
techniques was to improve the baseline of convolu-
tional auto-encoder system so that the quality of the
objectives reconstruction in matched clutter states can
be maintained, while the generalization capability to
unseen noise can be increased.

We used cross validation to evaluate the perfor-
mance of the CAEs. We simulated 10000 groups of
echo data and targets. 90 percent of them were re-
garded as train sets, and the rest were test sets. For
learning, we used the mini-batch optimizer with an
adaptive learning rate method (ADADELTA)[19] and
a batch size of 400. The training time with 23 epochs
was about 7s using the NVIDA GeForce GTX1080
GPU. We defined the Peak Signal-to-Clutter Ratio
(PSCR = 20 log(Maxs/Maxc)) to be the ratio of
the target signal power to the total power of the clutter
in the range bin containing the target. Where Maxs
and Maxc expressed the maximum amplitude of the

(a) (b) (c)

(d) (e) (f)

Figure 2: Example of sea clutter scene simulated by
K-distribution. (a) sea state degree 1: Very Low (short
and low wave) (b) sea state degree 2: Low (long and
low wave) (c) sea state degree 3: Light (short and
moderate wave) (d) sea state degree 4: Moderate (av-
erage and moderate wave) (e) sea state degree 5: Mod-
erate rough (long and moderate wave) (f) sea state de-
gree 6: Rough (short and heavy wave).

signal and clutter respectively. The test target signal
was submerged in the clutter of sea state degree 2 with
PSCR = 6dB as shown in Fig.3(b). The contour
plots and mesh plots of the reconstructed images us-
ing different methods were drawn in Fig. 3(c) and Fig.
3(d). It can be seen that the performance of conven-
tional orthodox STAP algorithm [17] is not as effec-
tive as which we proposed. From Fig.3(c), we can see
that there are still some clutters remained, and the tar-
get is not quiet obvious. For Fig.3(d), almost all the
clutters are suppressed, and the target is easy to detect.
For STAP, it estimates the disturbance covariance ma-
trix using training data collected from cells surround-
ing the cell. The method requires a high degree of
stability and uniformity of the environment. But sea
clutter itself has a large clutter block, clutter spikes
and other non-stationary characteristics, which dam-
age the reconstruction performance. The presented
detection method for static radar via our method is
better. It reconstructs the new input target echo and
the sea clutter is suppressed well using a weighted
combination of a few of these basis functions.

Fig. 4 shows the loss curve of reconstitution for
test data. The loss value represents the mean square
error between the original data and the reconstruction
data [18]. In the figure, we notice that after 50 times
iteration the loss value dropped down to 0.06. Using
the CAE, we suppressed the clutter and the outputs of
the CAEs are quiet similar to the original data. In the
radar theory [20], precise reconstruction results often
hold with an overwhelming probability. The method
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(a) (b)

(c) (d)

Figure 3: Example of target localization and recon-
struction in sea clutter. (a) Simulation of the target
trajectory. (b) Target amid the clutter. (c) Results us-
ing orthodox STAP algorithm. (d) Results using pro-
posed method on the test set.

shows the better performance in detection probability,
accuracy and robustness.

Figure 4: The curve reports the test error rate for CAE
trained on problem.

5 Conclusions and Future Work
The traditional radar systems have adopted adaptive
processing techniques to mitigate the deleterious ef-
fects of clutter and jamming. They need to estimate
the disturbance covariance matrix using training data
collected from cell under test, which impact the accu-
racy and flexibility of radar detection. Inspired by the
recent great success of deep ConvNets in computer vi-
sion and speech recognition, we address the problem
of feature extraction by constructing a Convolutional
Auto-Encoder to automatically learn hierarchical fea-
tures from large data sets. The network architecture,

training details, and common rules for setting hyper-
parameters are described in this paper. Simulation re-
sults demonstrate the superiority of based approach
over the conventional basic methods in clutter sup-
pression. Inspired by this research, we plan to apply
this method to the measured radar data in the future
work. Further more, we can take more complex con-
ditions into consideration, such as airborne radar sig-
nal, multi-objective scene, weak target detection and
so on.

Acknowledgements: This work is supported by
the National Natural Science Foundation of China
through the General Programs under Grant No.
61331020.

References:

[1] S.P. Sira, D. Cochran, A. Papandreou-
Suppappola, D. Morrell, B. Moran, S. Howard
and R. Calderbank, ”Improving Detection in
Sea Clutter Using Waveform Scheduling”, IEEE
International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2007, Vol.3,
pp.1241–1244

[2] F.C. Robey, D.R. Fuhrmann, E.J. Kelly, and R.
Nitzberg, ”A CFAR Adaptive Matched Filter
Detector”, IEEE Transactions on Aerospace and
Electronic Systems, 1992, Vol.28, pp.208–216

[3] W.L. Melvin, ”A STAP Overview”, IEEE Trans-
actions on Aerospace and Electronic Systems,
2004, Vol.19, pp.19–35

[4] M. Greco, F. Bordoni, and F. Gini, ”X-Band
Sea-Clutter Nonstationarity: Influence of Long
Waves”, IEEE Journal of Oceanic Engineering,
2004, Vol.19, pp.269–283

[5] G.E. Hinton, R.R. Salakhutdinov, ”Reducing the
Dimensionality of Data with Neural Networks”,
Science, 2006, Vol.313, pp.504–507

[6] Jürgen Schmidhuber, ”Deep Learning in Neu-
ral Networks: An Overview”, Neural Networks,
2015, Vol.313, pp.85–117

[7] J. Lundén, V. Koivunen, ”Deep Learning
for HRRP-Based Target Recognition in Multi-
static Radar Systems”, IEEE Radar Conference
(RadarConf), 2016, pp.1–6

[8] Y.Kim, T. Moon, ”Human Detection and Activ-
ity Classification Based on Micro-Doppler Sig-
natures Using Deep Convolutional Neural Net-
works”, IEEE Geoscience and Remote Sensing
Letters, 2016, Vol.13, pp.8–12

Qi Zhang et al.
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 39 Volume 2, 2017



[9] M.G. Gong, J.J. Zhao, J. Liu, Q.G. Miao, and
L.C. Jiao, ”Change Detection in Synthetic Aper-
ture Radar Images Based on Deep Neural Net-
works”, IEEE transactions on neural networks
and learning systems, 2016, Vol.27, pp.125–138

[10] M. Leshno, V.Y. Lin, A. Pinkus, and S.
Schocken, ”Multilayer Feedforward Networks
with a Nonpolynomial Activation Function Can
Approximate Any Function”, Neural networks,
1993, Vol.6, pp.861–867

[11] S. Bocquet, ”Calculation of Radar Probability
of Detection in K-Distributed Sea Clutter and
Noise”, DTIC Document, 2011

[12] D. Walker, ”Doppler Modelling of Radar Sea
Clutter”, IEEE Proceedings-Radar, Sonar and
Navigation, 2001, Vol.148, pp.73–80

[13] E. Jakeman, and R. Tough, ”Generalized K Dis-
tribution: A Statistical Model for Weak Scatter-
ing”, JOSA A, 1987, Vol.4, pp.1764–1772

[14] Hans-Jörg Isemer, and L. Hasse, ”The Scien-
tific Beaufort Equivalent Scale: Effects on Wind
Statistics and Climatological Air-Sea Flux Esti-
mates in the North Atlantic Ocean”, Journal of
climate, 1991, Vol.4, pp.819–836

[15] G.E. Hinton, A. Krizhevsky, and S.D. Wang,
”International Conference on Artificial Neural
Networks”, Springer, 2011, pp.44–51

[16] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio,
and P.A. Manzagol, ”Stacked Denoising Au-
toencoders: Learning Useful Representations in
a Deep Network with A Local Denoising Cri-
terion”, Journal of Machine Learning Research,
2010, Vol.11, pp.3371–3408

[17] M. Greco, P. Stinco, F. Gini, and M. Ran-
gaswamy, ”Impact of Sea Clutter Nonstationar-
ity on Disturbance Covariance Matrix Estima-
tion and CFAR Ddetector Performance”, IEEE
Transactions on Aerospace and Electronic Sys-
tems, 2010, Vol.46, pp.1502–1513

[18] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio
and P.A. Manzagol, ”Reducing the Dimension-
ality of Data with Neural Networks”, Journal
of Machine Learning Research, 2010, Vol.11,
pp.3371–3408

[19] D.M. Zeiler, ”ADADELTA: An Adaptive
Learning Rate Method”, arXiv preprint
arXiv:1212.5701, 2012

[20] D.P. Meyer and H.A. Mayer, ”Radar Target
Detection- Handbook of Theory and Practice”,
New York, Academic Press, Inc., 1973

Qi Zhang et al.
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 40 Volume 2, 2017




