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Abstract—A non-optimal algorithm based on atomic function is investigated for the Sampling – Reconstruction 
Procedure (SRP) of Gaussian process realizations. The reconstruction error function of this non-optimal algorithm is 
compared with the reconstruction error functions obtained in the optimal algorithm, represented by the conditional 
mean rule, and in another non-optimal algorithm based on Balakrishnan’s theorem. Results show that the application 
of atomic function has disadvantages reflected in a bigger magnitude of the error reconstruction.  
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1 Introduction 
There have been several investigations to try to 
establish a statistical description that defines the 
reconstruction of the realizations of a random 
process through the set of their samples. This 
problem is called by the Sampling – 
Reconstruction Procedure (SRP). Perhaps the 
most known work devoted to this problem was 
done by A. Balakrishnan in his theorem (BT) [1]. 
He mentioned that any realization of a stationary 
random process ( )x t  with a power spectrum 

( )S ω  restricted by the boundary frequency bω  
can be reconstructed by: 
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here ( )jx T  is a sample in the time jT , T∆  is the 

sampling interval determined by bT ωπ=∆  and 
2 N +1 is the number of samples taking into 
account in the reconstruction algorithm. As one 
can see, the base function ( )tjφ  for any sample  

( )jx T  is the sinc function  
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   A.Balakrishnan [2] wrote that “regardless of 
statistics, whether Gaussian or not, the best mean-
square estimate of ( )tx  from ( )jx T  is linear” and 

it is determined by (1). This point of view is 
practically not refuted in the literature. 
Furthermore, the reconstruction error is equal to 
zero for all types of the processes with a restricted 
power spectrum. 

It is important to mention some restrictions and 
disadvantages of BT [3]: 1) This theorem does not 
take into account the most important characteristic 
of each stochastic process – its probability density 
function (pdf). 2) The conditions of BT are not 
realizable because the sampled process is singular 
and the number of samples is equal to infinity. 3) 
Following BT, the sampled process must be 
stationary. 4) Among many statistical 
characteristics of a sampled process, BT limits its 
focus on only the numerical value: the boundary 
frequency bω  of the power spectrum ( )S ω . 5) 
Following BT, other very important statistic 
characteristics, like pdf, the covariance function   

( )1 2,K t t  or the type of the power spectrum ( )S ω   

( )bω ω< , do not influence outcome, whether in 
the reconstruction function or in the error 
reconstruction function. 6) BT declares that 
realizations of all types of random stationary 
processes can be optimally reconstructed by the 
unique linear algorithm with the base function- 
sinc. 7) No matter what types of random process 
is considered, with BT the reconstruction error 
function is equal to zero and the reconstruction is 
based on the same function. 8) The formula (2) 
determines the impulse response of the linear non-
realizable filter and the summing procedure (1) 
demands infinite delay.  

The application of the Conditional Mean Rule 
(CMR) in the statistical SRP description of 
random process realizations provides a possibility 
to make some important conclusions: 
1) Every random process must have its own 
reconstruction algorithm and its own 

reconstruction error function. 2) BT is valid for 
Gaussian processes only. 3) The linear 
reconstruction algorithm is valid for Gaussian 
processes only. 4) If the Gaussian process has a 
limited spectrum and the number of samples is 
finite, the sinc function is not the base optimal 
function. 5) In SRP description of Gaussian 
realizations, the reconstruction error function does 
not depend on the values of samples, but depends 
only in respect to axis of time. 6) BT is a 
particular case of the CMR algorithm for 
Gaussian processes with a finite spectrum. 

Following Balakrishnan’s theorem the 
reconstruction error is equal to zero. This result is 
valid, when the number of samples N  is infinite, 
though this condition is not realizable. But 
considering a limited number of samples, the 
reconstruction error is different to zero, and for 
the Gaussian processes it can be found by the 
formula:  
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where ( )⋅R  is the normalized covariance function.  

In recent years, in order to overcome these 
drawbacks, one methodology has been studied 
extensively. It is based on the conditional mean 
rule. On the basis of this method one can analyze 
the SRP of random processes with different types 
of probability density functions, taking into 
account the following aspects: the process can be 
stationary or non-stationary; the number of 
samples is arbitrary and limited; the intervals 
between neighbor samples can be arbitrary or 
periodical; etc. The rule provides the 
reconstruction procedure of any realization of a 
random process with the minimum error possible. 
In this case the main statistical properties of the 
given process are taking into account. It gives a 
possibility to obtain for any random process its 
own optimal reconstruction algorithm and the 
optimal reconstruction error algorithm [2]-[10]. 
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Besides Balakrishnan’s theorem, there are 
some others reconstruction methodologies which 
are used other set of orthogonal functions. For 
example, there is the Khurgin-Yakovlev’s  
theorem [11]. The main idea of this methodology 
is connected with using the set of derivatives of a 
given function instead of the set of samples of the 
same function. Generally one can use all 
derivatives of an arbitrary order M . The method is 
valid for functions with a restricted spectrum on 
the boundary frequency bω . The statistical 
expression of Khurgin-Yakovlev’s theorem is:  
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Where ( ) ( )ig Mj T∆  is the derivative of the order i  

of the function ( )g t  
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It is quite possible to use this algorithm for the 
SRP of realizations of random processes as well. 
But its effectiveness is not good because it is 
necessary to send all derivative values in a 
separate channel. The method using a set of 
samples of a given function is more productive 
because the reconstruction error is smaller (see [4, 
9] and citation there).  

There are some generalizations of Sampling 
Theorem (1) on the basis of so called atomic 
functions [12 – 13, 15 - 17]. There are algorithms 
of Strang - Fix and of Levitan. In the last variant 
one can introduce some trigonometric series in 
order to use in the description of SRP of various 
functions [13]. Below we concentrate our 
attention on the direct SRP algorithm based on 
atomic functions. Because there are not any 
English publications about atomic functions, we 
give some initial information about such functions 
here. 

 
 
 

2 About Atomic Functions 
The theory of these functions was described by V. 
L. Rvachiov by first time in [12]. The application 
of this theory in SRP problems was suggested for 
deterministic functions [13, 16].  

The atomic functions are characterized by one 
principal property: the analytical expression for 
the derivative of any order of a function is the 
same analytical expression of the original 
function, though the amplitudes, durations and 
signs of the produced functions by the derivatives 
could be different. The atomic functions 

( ) ( )2>ββ xh  are the solutions of the differential 
equation [12, 13]: 
 

( ) ( ) ( )[ ]11
2

'
2
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The Fourier transformation for the 

function ( )xhβ  is: 
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sin

j
jcF

β
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This function tends to zero at 

points ( )2 , 0j jπ ≠ . In Fig. 1 are presented the 
functions ( )xhβ  for different values β . While Fig. 
2 shows the normalized first order derivative for 
each type of function expressed in Fig. 1. 

In Fig. 3 are the non-normalized derivatives of 
the function ( )xh2 . In these graphs, the form of the 
curves of the different order derivatives is the 
same, but the amplitudes, the durations and the 
signs vary. In [12, 13] are investigated more types 
of atomic functions in detail.  

Any random realization has many ways to be 
reconstructed. It means one can use an alternative 
methodology to the optimal methodology 
according the properties of each realization. This 
parallel technique can have some others statistical 
parameters than the optimal technique uses to 
make the reconstruction. Because of this, such 
reconstruction is not adequate, so it is called non-
optimal reconstruction algorithm. Balakrishnan’s 
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theorem with the limited number of samples N is  

 
Fig. 1. Function ( )xhβ  for: a) 2=β , b) 5.2=β , c) 3=β  and 5=β . 

 
 

 
Fig. 2. Normalized derivative of the function ( )xhβ  for: a) 2=β , b) 5.2=β , c) 3=β  and 5=β . 

 
Also, the conditional mean rule algorithm 

can be considered as a non-optimal algorithm if 
it does not take into account the appropriate 
parameters. The main reason to apply such 
algorithms is having a simpler methodology.  

The present paper is devoted to the 
investigation of a new non-optimal algorithm 
based on atomic functions. Besides this, it is 

necessary to compare the reconstruction 
SRPquality of Gaussian process realizations. 

Therre are three the most interesting variants:    
the optimal algorithm based on the conditional 
mean rule, Balakrishnan’s algorithm, and the 
non-optimal algorithm based on atomic 
functions. The number of samples is finite in all 
cases. 
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The investigation is centered on the statistical 
SRP description  

 
 

3The Optimal Reconstruction Algorithm  
The optimal algorithm is based on the conditional 
mean rule. It allows obtaining the reconstruction of 
realizations of a random process by the knowledge 
of their complete statistical description.  

The main idea of this methodology has been 
proposed in [2] (see also [4, 9, 10]). Firstly, let us 
consider a random process ( )tx  characterized by its 
multidimensional probability functions 

( ) ( ) ( )[ ]mm txtxtxw ,...,, 21 . One realization of this 
process is sampled in time instant { }NTTTT ,...,, 21= . 
Therefore, there is a set of samples 

( ) ( ) ( )NTxTxTxTX ,...,,, 21= , where the number of 
samples N  and their times of occurrence iT  are 
arbitrary. It means that the probability density 
function, all initial and central moment functions 
are conditional now. 

The conditional mean function ( ) ( ) TXtxtm ,~ =  is 
used as reconstruction function. The quality of the 
reconstruction is evaluated by the conditional 
variance function ( ) ( ) ( )[ ] TXtmtxt ,~~ 22 −=σ  or 
reconstruction error function. Both characteristics 

( )tm~  and ( )t2~σ  can be found on the basis of the 
conditional multidimensional pdf ( )( )TXtxwN ,1+  of 
the given process. It is clear that one can’t know 
exactly the sampled realization, but with this rule it 
is possible to reconstruct the realization. The rule 
also provides the minimum estimation 
reconstruction error for realizations with an 
arbitrary pdf.  

The investigation is centered on the statistical 
Sampling – Reconstruction Procedure description 
of Gaussian process. 

Considering that the realization sampled is 
Gaussian, their conditional characteristics are [14]: 
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where ( )tm  and ( )t2σ  are respectively the 
mathematical expectation and the variance of 
the initial process ( )tx ; ( )⋅K  is the covariance 
function, and ija  represents the elements of the 
inverse covariance function. Let assume that the 
realization is stationary. Let us assume: ( ) 0=tm  
and ( ) 12 =tσ . From (7) and (8), one can see: the 
reconstruction function is the linear function of 
samples and the reconstruction error function 
does not depend on samples.. 

 
Fig. 3. Non-normalized derivatives of the 

function ( )xh2 . 
 
 
4 The Non-optimal Reconstruction 
Algorithm 
Now we shall discuss the non-optimal algorithm 
based on atomic functions. For making the 
reconstruction of any realization of a given 
process with its restricted power spectrum, it is 
possible to use the Fourier transformation (6) of 
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the atomic functions [12, 13, 15 - 17]. The 
reason is that the zeros of (6) are located 
periodically. Besides this, the functions 
described by (6) tend to zero in the infinite 
faster than other functions [13]. Considering this 
methodology, the reconstruction function ( )tm̂  
for any random processes with a limited power 
spectrum on the basis of the samples ( )ix T∆  is: 
 

( ) ( ) ( )∑
∞

−∞=








∆−

∆
∆=

i
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i
i Tt

T
FTxtm π
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where ( )ρβF  is given by (6), and [13]: 
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Then the equation (9) changes to: 
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Expression (11) can be interpreted as the 

disintegration of the function ( )tx  on the basis of 
the displacement-narrowing of the imaginary 
Fourier functions of the atomic function ( )⋅2h . 
For its application it can be restricted by a finite 
amount on the right side, being indicated as 
[13]: 
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when: 
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The minimum values are determined by the 

solution of the equation ( ) 21 =+ − Nββ . 
When 1=N , the WKS series is obtained; and if 

∞=N , the series (13) is transformed into (12). 
To calculate the reconstruction error, let us 

introduce the base function ( )tjϕ : 
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Then, assuming a finite number of 

samples N , the reconstruction error function is 
[18]: 
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Here there is the same situation like in (7), 

(8): the reconstruction function depends on the 
values of the samples and the error 
reconstruction function does not depend on 
them. 

 
 

5 Comparisons Between Both 
Reconstruction Algorithms 
Let us chose a realization from a Gaussian 
Markovian process. It is formed on the output of 
an one-stage integrated RC circuit driven by 
Gaussian white noise ( )tn . The normalized 
covariance function ( )τR  and the power 
spectrum density ( )ωS  are: 
 

( ) ( )τατ −= expR ,                            (16) 
 

( ) 2 2

2S αω
α ω

=
+

.                         (17) 

 
As the covariance time cτ  is unitary, 

then 1=α .  
The Gaussian Markovian process is not 

differentiable because the variance of its 
derivative is equal to infinity. Restricting the 
spectrum (17) in the frequency bω , the properties 
of the given process change radically. The 
resulting process is non-Markovian and 
infinitely differentiable. So, the covariance 
function now is:  
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The first term in (18) ensures the 

normalization for the power spectrum of the 
obtained process with any value of the boundary 
frequency bω . Fig 4 shows the normalized 
covariance function ( )τR  for different values 
of bω . When bω  is equal to infinity, the curve is 
similar to the curve obtained with one-stage RC 
filter.

 
Fig. 4. Normalized covariance function of a 
Gaussian process with different values of bω . 

 
In order to have a complete comparison of the 

efficiency of the optimal algorithm and the non-
optimal algorithms, let us introduce another 
type of non-optimal algorithm. This algorithm is 
based on Balakrishnan’s theorem [1] when the 
number of samples N is finite. The 
reconstruction function and the reconstruction 
error function are represented by (1), (3) 
respectively. 

Firstly, it is necessary to know the type of 
base functions for each mentioned algorithms: 
optimal algorithm (conditional mean rule), non-
optimal algorithm of the case A (Balakrishnan’s 
theorem with a finite set of samples), and non-
optimal algorithm of the case B (atomic 
functions). Fig. 5 shows the base functions. All 
curves have a value of zero at the sampling 
points, except at the initial point because it 
corresponds to the multiplication of the sample 

with the base function. The forms of the curves 
are different. In the non-optimal algorithm, the 
curve of the case A tends to zero more slowly as 
a consequence of its large peak values. The 
curve of the case B tends to zero fastest. (This 
curve was calculated with 1.2=β  because it is a 
near value to the limit value which is 2=β .) 
This means that the influence between the 
samples is minimal in this case. There is the 
same situation if the coefficient 4=β . When the 
value β  increases, then the amplitude of the 
oscillations increase as well. However, all base 
functions of the case B tend to zero faster than 
the optimal algorithm and the case A of the non-
optimal algorithm.    
 

 
Fig. 5. Comparison of base functions. 

 
Fig. 6 illustrates the error reconstruction 

function for the case B of the non-optimal 
algorithm (atomic functions) for various values 
N  and 1.2=β . It is important to note that the 
unit of measurement on the x-axis is the 
boundary frequency bω , not the time. Obviously, 
when the number of samples increases the 
reconstruction error decreases. The maximum 
error is obtained at the half of the sampling 
interval 2Tt ∆= . 
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Fig. 6. Reconstruction error functions using atomic 

functions with N  and 1.2=β . 
 
 Now we shall compare the effectiveness of 
the algorithm with atomic functions the 
reconstruction errors of the optimal algorithm 
and the non-optimal algorithm of the case A. In 
Fig. 7 the reconstruction error functions are 
presented for all above mentioned 
methodologies with 2=N . In Fig. 8 the curves 
are calculated with 4=N . In Fig. 9 the number 
of samples is equal to 8=N . 

In the non-optimal algorithm (the case B), 
when values of the boundary frequency are 

2<bω , the magnitude of the error increases with 
respect to the error of the optimal algorithm if 
the number of samples N  grows. When the 
boundary frequency is 2>bω  the difference 
with the optimal error decreases gradually (with 
the exception of the situation when 2=N  and 

4=β ). The curves in the non-optimal algorithm 
(the case A) have a similar behavior like the 
curves of the optimal algorithm while the 
number of samples grows.  

When 2=N , the error in case A is the biggest. 
When 4=N , the error in case A is smaller than 
the error in case B with 1.2=β , but bigger than 
the error in case B with 4=β . When 8=N , the 
error in case A is the smallest in all non-optimal 
cases. The physical interpretation of this effect 
is related with the special property of atomic 
functions. They tend to zero very quickly, so the 
influence between the neighboring samples for 
making the reconstruction operation is small. 
So, with 2=N  the influence is minimal, and the 
error grows considerably. With more samples 
the influence rises, and the error decreases.  

 

 
Fig. 7. Comparison of the reconstruction 

error function with 2=N . 
 

 
Fig. 8. Comparison of the reconstruction 

error function with 4=N . 
 

 
Fig. 9. Comparison of the reconstruction 

error function with 8=N  
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Obviously, the magnitude of the error in the 
optimal algorithm is smaller than the non-
optimal algorithms. But this is a natural effect 
due to the structure of its functions. 

 
 

6 Conclusions 
Three different reconstruction algorithms are 
analyzed to describe the sampling-
reconstruction procedure of realizations of a 
Gaussian process with a finite power spectrum. 
Both principal characteristics (reconstruction 
functions and reconstruction error functions) are 
calculated. In general, the smallest 
reconstruction error is obtained by the algorithm 
with the conditional mean rule, also called 
optimal algorithm. Then it is the non-optimal 
algorithm based on the Balakrishnan’s theorem. 
And the biggest reconstruction error is obtained 
with the non-optimal algorithm based on atomic 
functions. The non-optimal function does not 
depend on the covariance function for making 
the reconstruction operation. They depend on 
the boundary frequency only. The algorithm on 
the base of the conditional mean rule takes into 
account the covariance function of the sampled 
process, and for this reason the optimal 
algorithm has the best characteristics of the 
reconstruction procedures.  
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