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Abstract: - Extremely massive MIMO (Multiple-Input Multiple-Output) is a crucial technology in wireless 
communication systems. By deploying a large number of antennas, extremely massive MIMO enables spatial 
diversity, but it also introduces significant computational complexity due to the large number of antennas 
involved in various processing tasks. One such task is precoding, where numerous improvements have been 
proposed in the literature. However, most existing methods assume spatially stationary channels and do not 
adequately account for the spatial non-stationarity that arises when the number of antennas increases. The 
randomized Kaczmarz algorithm (rKA) method and the sampling without replacement rKA (SwoR-rKA) method, 
that is an enhancement method of rKA, are proposed for the spatial non-stationarity downlink. The bit error ratio 
of rKA and SwoR-rKA are good at lower signal-to-noise ratio but the performances level off due to the residuals 
at higher signal-to-noise ratio, so the performances of bit error ratio are limited with the residuals. This paper 
focuses on reducing the residuals with the same or lower computational complexity. In the rKA method, the 
factors of precoding matrix are updated iteratively and a column to be updated is selected by a probability. The 
rKA method select each column at randomly and the SwoR-rKA tends to select a column corresponding to the 
channel in better condition. It, however, is not effective to update the column corresponding to good conditions 
because the columns corresponding to the good channels can be estimated to some extent with a small number 
of iterations. Our idea to improve the SwoR-rKA is that the policy to select a column to be updated is set that the 
columns corresponding to channels in bad condition tend to be selected. With this policy, all the columns 
corresponding to each channel are considered to reach a certain degree of estimation criteria. The result of 
computer simulation shows that proposed method defeats the original SwoR-rKA in view of bit error ratio 
performance with the same complexity, particularly at high signal-to-noise ratios of about 16 dB or more. The 
simulation results provide evidence of the effectiveness of the proposed approaches in mitigating the impact of 
spatial non-stationarity, leading to improved bit error ratio performance. 
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1 Introduction 
Wireless communication technology has become an 
indispensable technology in modern society. The 
Internet is utilized in various scenarios, such as video 
streaming services, web conferences, and remote 
learning. In the past, wired connections were 
primarily used due to speed limitations. However, in 
recent years, wireless communication has provided 
sufficient speed, enabling the reception of numerous 
services through wireless means. Furthermore, the 
proliferation of the Internet of Things (IoT) [1-3] has 
resulted in an exponential increase in wireless 
communication devices. To enable multiple wireless 
communication devices to simultaneously achieve 
high-speed and high-reliability communication, the 
technology known as massive MIMO (Multiple-
Input Multiple-Output) wireless communication 
system [4] is actively researched. Conventional 

MIMO wireless communication systems utilized a 
few antennas for transmission and reception, whereas 
extremely massive MIMO wireless communication 
enhances spectral efficiency by deploying hundreds 
of antennas at base stations. 

An increase in the number of antennas brings not 
only advantages but also disadvantages. One of them 
is the computational complexity. As the number of 
antennas increases, the benefits obtained in Massive 
MIMO systems are substantial. However, it is also 
important to address the increased computational 
complexity associated with the processing required 
for transmission and reception. Signal detection [5-6], 
decoding [7-8], and precoding [9-10] are among the 
typical tasks that are affected by this complexity. 

Additionally, the increased number of antennas 
introduces certain differences compared to 
conventional MIMO systems. For instance, the non-
stationarity of the spatial environment becomes 
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significant and cannot be ignored. Currently, many 
existing methods discuss this issue while 
disregarding the non-stationarity [11]. As an example, 
the tensor zero-forcing (ZF) method is a prominent 
linear signal estimation technique [12], but it is not 
practical from a spectral efficiency perspective. Of 
course, improved algorithms such as regularized ZF 
(RZF) methods [13] have been proposed, leading to 
enhanced spectral efficiency. However, lots of 
approaches primarily focus on signal detection in the 
uplink scenario [14-16]. 

On the other hand, regarding signal detection in 
the downlink scenario, methods based on the 
randomized Kaczmarz algorithm (rKA) method [17] 
and the sampling without replacement rKA (SwoR-
rKA) method [18] have been proposed. They can 
solve the issue of RZF that the computational 
complexity to obtain the inverse matrix is too large 
for extremely massive MIMO. With the rKA method, 
however, the bit error ratio (BER) levels off due to 
residuals even though the noise becomes low, so it is 
not useful in lower-noise environment. The SwoR-
rKA method has less residuals than the rKA. 

In this paper, the precoding process in the 
downlink for extremely massive MIMO is focused on 
and there are two goals. The first is to further reduce 
the residuals of SwoR-rKA, and that makes the BER 
performances better. The second is to reduce the 
computational complexity of SwoR-rKA to make it 
practical for the extremely massive MIMO systems 
with many antennas. In order to achieve the goals, we 
update the probability to select the column of 
precoding matrix in rKA and confirm the 
performances of BER with the computer simulation. 

Organization: The rest of this paper is organized 
as follows. In Section 2, the model considered in this 
paper is shown. The conventional precoding methods 
are shown in Section 3. The idea of improvement of 
SwoR-rKA is also described in the section. In Section 
4, the BER performances of proposed method and the 
other methods are shown as the result of computer 
simulations. In the section, we show that our method 
can reduce the residuals, and that the reduction of 
residuals is more pronounced when the number of 
iterations in the algorithm is low. The conclusions are 
drawn in Section 5. 
 

 

2 Model 
Let us define the model for the Massive MIMO 
wireless communication system under investigation 
in this study. Firstly, the base station is equipped with 
M antennas, and it serves K user devices. Each user 

device has a single antenna. The M antennas at the 
base station can be divided into S subarrays, where 
the s-th subarray has 𝑀𝑠 antennas and each subarray 
accommodates a distributed set of user devices. The 
number of user devices connected to subarray j is 
denoted as 𝐾𝑗, that is, (1) holds. 

 𝐾 = ∑ 𝐾𝑗𝑗 . (1) 

In this case, let's define 𝑦𝑗,𝑘 as the received signal by 
the k-th user device 𝑈𝑗,𝑘  connected to the j-th 
subarray. 𝒙𝑠  represents the signal transmitted from 
the s-th subarray, and 𝒉𝑗,𝑘

𝑠  represents the channel 
vector between the s-th subarray and 𝑈𝑗,𝑘 . The 
channel matrix between s-th subarray in the base 
station and 𝐾𝑗  user devices in the j-th subarray is 
denoted as 𝑯𝑗

𝑠 = [𝒉𝑗,1
𝑠 , 𝒉𝑗,2

𝑠 , … , 𝒉𝑗,𝑘(𝑗)
𝑠 ]. The relation 

between received signal and transmitted signal is 
represented in (2). 

 𝑦𝑗,𝑘 = ∑ (𝒉𝑗,𝑘
𝑠 )

H
𝒙𝑠𝑠 + 𝑛𝑗

𝑘 (2) 

Here, (∙)H  represents the complex conjugate 
transpose, 𝑛𝑗

𝑘  denotes the additive circularly 
symmetric complex Gaussian noise at 𝑈𝑗,𝑘 with zero 
mean and a covariance of 𝜎2. 

In this study, the base station is assumed have 
imperfect channel information. Specifically, the 
estimated value of the communication channel vector 
𝒉̃𝑗,𝑘

𝑠  is obtained by (3). 

 𝒉̃𝑗,𝑘
𝑠 = √(1 − 𝜏2) 𝒉𝑗,𝑘

𝑠 + 𝜏𝒏𝑗,𝑘
𝑠  (3) 

Here, 𝒉𝑗,𝑘
𝑠  and 𝒏𝑗,𝑘

𝑠  denotes the true value of the 
channel vector and the independent error vector. The 
estimated channel matrix between s-th subarray in 
the base station and 𝐾𝑗  user devices in the j-th 
subarray is denoted as 𝑯̂𝑗

𝑠 = [𝒉̃𝑗,1
𝑠 , 𝒉̃𝑗,2

𝑠 , … , 𝒉̃𝑗,𝐾𝑗

𝑠 ]. 
By the way, in this study, the Massive MIMO 

system is assumed to exhibit non-stationarity. 
Specifically, the communication channel vector 
between 𝑈𝑗,𝑘 and 𝑀𝑠 antennas in the s-th subarray is 
defined as follows: 

 𝒉𝑗,𝑘
𝑠 = √𝑀𝑠 (𝚽j,k

s )
1

2𝒛𝑗,𝑘
𝑠 ∈ ℂ𝑀𝑠×1, (4) 

 𝚽𝑗,𝑘
𝑠 = (𝑫𝑗,𝑘

𝑠 )
1

2𝑹𝑗,𝑘
𝑠 (𝑫𝑗,𝑘

𝑠 )
1

2 ∈ ℂ𝑀𝑠×𝑀𝑠, (5) 
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where 𝒛𝑗,𝑘
𝑠 ∈ ℂ𝑀𝑠×1  follows a Gaussian distribution 

with mean 0 and covariance 1

𝑀𝑠
𝐈𝑀𝑠

, 𝐈𝑀𝑠
 denotes the 

identity matrix of order 𝑀𝑠 , 𝑹𝑗,𝑘
𝑠 ∈ ℂ𝑀𝑠×𝑀𝑠  denotes 

the spatial correlation matrix between 𝑈𝑗,𝑘  and s-th 
subarray in the base station, and 𝑫𝑗,𝑘

𝑠 ∈ ℂ𝑀𝑠×𝑀𝑠 
denotes a diagonal matrix and has 𝐷𝑗,𝑘

𝑠  non-zero 
diagonal elements between 𝑈𝑗,𝑘 and s-th subarray in 
the base station. 

The channel normalization scheme in this study is 
that the energy of the user devices served by different 
numbers of antennas may be the same. 
 
 

3 Precoding 
Precoding techniques are signal processing methods 
employed at the transmitter to modulate the 
transmitted signal with coefficients pre-determined 
based on the state of the communication channel. 
This technique aims to enhance the signal quality at 
the receiver's end.  
 
 
3.1 Overview 
The data symbol transmitted from the j-th subarray to 
𝑈𝑗,𝑘  is denoted as 𝑠𝑗,𝑘  which follows a Gaussian 
distribution with mean 0 and covariance 𝑝𝑗,𝑘 . The 
vector of data symbols transmitted from the j-th 

subarray is represented as 𝒔𝑗 = [𝑠𝑗,1, 𝑠𝑗,2, … , 𝑠𝑗,𝐾𝑗
]

𝑇
. 

In other words, 𝒔𝑗 encompasses all the data symbols 
transmitted to 𝑈𝑗,𝑘(1 ≤ 𝑘 ≤ 𝐾𝑗) . With 𝒔𝑗 , the 
transmitted signal 𝒙𝑗 in (2) can be transformed into 
(6). 

 𝒙𝑗 = ∑ 𝒈𝑗,𝑘𝑠𝑠,𝑘
𝐾𝑗

𝑘=1 = 𝑮𝑗𝒔𝑗, (6) 

where 𝑮𝑗 = [𝒈𝑗,1, 𝒈𝑗,2, … , 𝒈𝑗,𝐾𝑗
]  is the precoding 

matrix for 𝐾𝑗  user devices in the j-th subarray, and 
𝒈𝑗,𝑘  represents the precoding vector for 𝑈𝑗,𝑘 . 𝒈𝑗,𝑘 
satisfies the power constraint, the expectation value 
of ‖𝒈𝑗,𝑘‖

2 is 1. Now, (2) is transformed into (7). 

 𝑦𝑗,𝑘 = (𝒉𝑗,𝑘
𝑗

)
𝐻

𝒈𝑗,𝑘𝑠𝑗,𝑘 + ∑ (𝒉𝑗,𝑘
𝑗

)
𝐻

𝒈𝑗,𝑖𝑠𝑠,𝑖
𝐾𝑗

𝑖=1
𝑖≠𝑘

 

 + ∑ ∑ (𝒉𝑗,𝑘
𝑠 )

𝐻
𝒈𝑠,𝑖𝑠𝑠,𝑖

𝐾𝑗

𝑖=1
𝑆
𝑠=1
𝑠≠𝑗

+ 𝑛𝑗,𝑘, (7) 

where the first term denotes a desired signal, the 
second term denotes intra-subarray interference, and 

the third term denotes inter-subarray interference. 
One of the linear precoding schemes is RZF [13] 
whose precoding matrix 𝑮𝑗

𝑅𝑍𝐹 is denoted by (8). 

 𝑭𝑗 = 𝑯𝑗
𝑗

((𝑯𝑗
𝑗
)

𝐻
𝑯𝑗

𝑗
+ 𝜉𝑰𝐾𝑗

)
−1

,  

 𝑮𝑗
𝑅𝑍𝐹 = √𝑃/Tr(𝑭𝑗

𝐻𝑭𝑗) ∙ 𝑭𝑗, (8) 

where 𝜉 =
𝜎2

𝑃
, 𝑃  denotes signal power, and Tr(∙) 

denotes the trace operator. The complexity of (8) 
increased with the size of antennas and subarrays, so 
it is difficult for extremely massive MIMO systems 
to calculate it. 
 
 
3.2 rKA method 
The rKA method refers to the randomized Kaczmarz 
algorithm [17]. It leverages randomization to 
iteratively update the precoding coefficients based on 
the received signal and the estimated channel 
information. This method helps mitigate interference 
and improve system performance. 
 In order to obtain 𝑮𝑗, (9) is required to be solved 
for 𝒛𝑗 [18]. 

 (𝑨𝑗)
𝐻

𝒛𝑗 = 𝒔𝑗. (9) 

where 𝑨𝑗 = [𝑯𝑗
𝑗
; √𝜉𝑰𝐾𝑗

] ∈ ℂ(𝑀𝑗+𝐾𝑗) ×𝐾𝑗  and 𝒛𝑗 =

𝑨𝑗𝒘𝑗 . 𝐾𝑗  rKA program are run where 𝒔𝑗  for 𝑘 -th 
program is 𝒆𝑗  which denotes 𝑘 -th canonical basis 
[11]. The process of rKA is shown in the following 
steps 0 to 2. 

step 0: Initialize the state vectors 𝒎𝑗
0 ∈ ℂ𝑀𝑗  and 

𝒏𝑗
0 ∈ ℂ𝐾𝑗  with zero vector. Define user 

canonical basis 𝐞𝑘 , where [𝐞𝑘]𝑘 = 1  and 
[𝐞𝑘]𝑗 = 0 (𝑗 ≠ 𝑘) . Initialize the output 
matrix 𝐖𝑗 ∈ ℂ𝐾𝑗×𝐾𝑗 with zeros. 

step 1: Repeat step 1a to 1e for 𝜏 times. After that, 
go to step 2. 

step 1a: Select the 𝑟𝑡-th row of (𝑯𝑗
𝑗
)

𝐻
 and denotes 

it 𝒉𝑗𝑟𝑡

𝑗 , where the probability of selecting 𝑟𝑡 
is given by 𝑃𝑟𝑡

𝑗
= 1/𝐾𝑗. 
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step 1b: Calculate the residual 𝜂𝑡 =
[𝐞𝑘]𝑟𝑡

−〈𝒉𝑗𝑟𝑡

𝑗
,𝒎𝑗

𝑡〉−𝜉𝑛𝑗𝑟𝑡
𝑡

‖𝒉𝑗𝑟𝑡

𝑗
‖

2
+𝜉

 , where [𝐞𝑘]𝑟𝑡
 denotes 

the 𝑟𝑡-th factor of 𝐞𝑘, 𝜉 denotes the inverse 
of the signal to noise ratio (SNR), 
〈𝒉𝑗𝑟𝑡

𝑗
, 𝒎𝑗

𝑡〉 denotes the inner product of 𝒉𝑗𝑟𝑡

𝑗  
and 𝒎𝑗

𝑡, and ‖∙‖ denotes the 𝑙2-norm. 

step 1c: Update 𝒎𝑗
𝑡+1 = 𝒎𝑗

𝑡 + 𝜂𝑡𝒉𝑗𝑟𝑡

𝑗 . 

step 1e: Copy 𝒏𝑗
𝑡 to 𝒏𝑗

𝑡+1. 

step 1d: Update [𝒏𝑗
𝑡+1]

𝑟𝑡
= [𝒏𝑗

𝑡+1]
𝑟𝑡

+ 𝜂𝑡. 

step 2: Update the k-th column of 𝐖𝑗 with 𝒏𝑗
𝜏. 

Finally, the precoding matrix 𝑮𝑗
𝑅𝑍𝐹  is 

approximated as (10). 

 𝑮𝑗
𝑅𝑍𝐹 = √𝑃/Tr(𝑭𝑗

𝐻𝑭𝑗)𝐇𝑗
𝑗
𝐖𝑗, (10) 

Note that obtaining the precoding matrix with rKA 
method results in a residual term, so it does not yield 
the desired value. 
 
 
3.3 SwoR-rKA method 
The SwoR-rKA method [18] is a technique that 
improves the convergence speed and enhances the 
spectral efficiency with the selection probability 
shown in (11) for step 1a of rKA. 

  𝑃𝑟𝑡

𝑗
=

(‖𝐡𝑗𝑟𝑡

𝑗
‖

2
+𝜉)

‖𝐇𝑗
𝑗
‖

𝐹

2
+𝐾𝑗𝜉

  (11) 

where ‖∙‖𝐹 denotes Frobenius norm. 
Unlike the rKA method, SwoR-rKA allows for 

the use of different 𝐡𝑗𝑟𝑡

𝑗  and 𝐧𝑗𝑟𝑡

𝑗  values each time the 
selection is made. This flexibility enables the 
proactive selection of users who have better channel 
conditions. 

By adjusting the probabilities of selection based 
on the channel quality, SwoR-rKA focuses on 
prioritizing users with favorable communication 
channels. This approach aims to improve system 
performance by allocating more resources to users 
with better channel conditions, leading to enhanced 
SE and faster convergence speed compared to 
traditional methods like rKA. Furthermore, the 

SwoR-rKA can reduce the BER effectively when the 
channel estimation is not perfect at the transmitter. 
 
 
3.4 Proposed method 
In SwoR-rKA, the selection of users is actively 
performed based on the communication channel 
information to enhance the accuracy through iterative 
methods. However, this approach tends to select 
users with better channel conditions more frequently, 
leading to variations in the accuracy of signal 
estimation. As a result, there is a possibility of 
deteriorating the overall bit error rate. 

When the channel conditions are favorable, there 
is no need to allocate a significant computational load 
to the estimation process. Conversely, when the 
channel conditions are poor, a larger computational 
load is required. Therefore, in this paper, (12) is 
proposed to determine the user selection probability. 

  𝑃𝑟𝑡

𝑗
= 1 −

(‖𝐡𝑗𝑟𝑡

𝑗
‖

2
+𝜉)

‖𝐇𝑗
𝑗
‖

𝐹

2
+𝐾𝑗𝜉

  (12) 

(12) means that the columns corresponding to the bad 
channel are tends to be selected. 

The number of complex multiplications of our 
method is the same as one of SwoR-rKA because 
ours is different from SwoR-rKA in just probability 
to select the column of precoding matrix to be 
updated. 
 

 

4 Simulation 
To evaluate the performance of the proposed method, 
some simulations were conducted. The aims of 
simulations are to confirm the BER performances 
with the various normalized transmit powers and to 
confirm those with various number of iterations in 
rKA. 
 The simulation program is made by Python, and 
other environment of software is shown in Table 1. 
 
 

TABLE 1.  SIMULATION ENVIRONMENT 

Software/Library Version 

Python 3.10.6 
NumPy 1.24.3 
SciPy 1.10.1 

Matplotlib 3.7.1 
 

Tatsuki Fukuda
International Journal of Communications 

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 9 Volume 8, 2023



 Through the simulations shown in this section, 
some parameters of simulations and precoding 
methods were fixed to specific values. They are 
presented in Table 2.  
 
 

TABLE 2.  SIMULATION PARAMETERS 

Parameter Value Explanation 

𝐾𝑗 16 The number of users 
in a subarray. 

𝑀 256 
The number of 
antennas at base 
station. 

𝑆 16 The number of 
subarrays. 

𝑀𝑗 16 
The number of 
antennas in a 
subarray. 

𝑇 10 
The length of timeslot 
that channel states 
remain unchanged. 

modulation 64QAM A kind of digital 
modulation method. 

Trials 105 

The number of 
simulation traials 
with fixed channel 
states.  

𝜏 0.3 The quality of CSI at 
base station. 

𝜎2 1 dBm The power of noise. 
 
 
4.1 BER vs. normalized transmit power 
In order to confirm the change in BER due to 
normalized transmit power (NTP),  the simulations 
with each of the original rKA, the SwoR-rKA, and 
ours were conducted, respectively. Furthermore, the 
simulations were conducted in case that the base 
stations have perfect channel information and that 
ones have imperfect channel information. 

The Fig. 1 shows the BER performances of each 
precoding methods in case of the base stations with 
imperfect channel information. In the simulation, the 
number of iterations in rKA algorithm is fixed to 100.  

As you see, the BER performance of the original 
rKA method levels off due to residuals. Fig. 1 also 
shows that our method defeats SwoR-rKA and rKA 
methods at the relatively high NTP of about 16 dB or 
higher. At the lower NTP, BER performance of ours 
is slightly better than others, but the different is so 
small.  

 

 
 

 
 
Fig. 2 shows the BER performances in case of the 

base stations with perfect channel information. The 
number of iterations is 100 for each method.  

Compared to Fig. 1, Fig. 2 shows that ours and 
SwoR-rKA are converged to the residuals at lower 
NTP while the performance of original rKA is almost 
the same as those in Fig. 1. Similar to the results in 
Fig. 1, Fig.2 shows that the BER performance of ours 
is slightly better than others at the lower NTP and that 
ours defeats others at the high NTP. The difference 
between ours and SwoR-rKA got bigger from about 
16 dB of NTP. 
 
 
4.2 BER vs. the number of iterations 
Next, the simulations to confirm the BER 
performances with changes in the number of 
iterations in rKA algorithm were conducted. The 
number of iterations in the simulations are 20, 40, 60, 
80, 100, 120, 140, 160, 180, and 200, and the results 
are shown in Fig. 3 to Fig. 12, respectively. The base 
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Normalized transmit power [dB] 
Fig. 1 BER performances of original rKA, SwoR-rKA, 
and ours against the normalized transmit power over 
imperfect non-stationary channels. 
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Normalized transmit power [dB] 

Fig. 2 BER performances of original rKA, SwoR-rKA, 
and ours against the normalized transmit power over perfect 
non-stationary channels. 
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stations in the simulations have the imperfect channel 
information.  
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Normalized transmit power [dB] 

Fig. 3 BER performances of original rKA, SwoR-rKA, 
and ours against the normalized transmit power over 
imperfect non-stationary channels. The number of iterations 
in each method is 20. 
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Normalized transmit power [dB] 

Fig. 4 BER performances of original rKA, SwoR-rKA, 
and ours against the normalized transmit power over 
imperfect non-stationary channels. The number of iterations 
in each method is 40. 
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Fig. 5 BER performances of original rKA, SwoR-rKA, 
and ours against the normalized transmit power over 
imperfect non-stationary channels. The number of iterations 
in each method is 60. 
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Fig. 6 BER performances of original rKA, SwoR-rKA, 
and ours against the normalized transmit power over 
imperfect non-stationary channels. The number of iterations 
in each method is 80. 
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Fig. 7 BER performances of original rKA, SwoR-rKA, 
and ours against the normalized transmit power over 
imperfect non-stationary channels. The number of iterations 
in each method is 100. 
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Fig. 8 BER performances of original rKA, SwoR-rKA, 
and ours against the normalized transmit power over 
imperfect non-stationary channels. The number of iterations 
in each method is 120. 
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From the figures, SwoR-rKA and ours are 
improved in BER performance with the increase of 
the number of iterations in rKA algorithm while those 
of the original rKA are improved slightly due to the 
residuals. SwoR-rKA and ours, however, also has 
residuals, so the performances of BER is considered 
to plateau as the number of iterations becomes even 
higher. Compared to SwoR-rKA, ours shows better 
performance clearly at high NTP in case of the low 
number of iterations especially from 80 to 120. The 
BER performances of SwoR-rKA and ours does not 
change well in case of 140 or more iterations. 

That means that the BER performance of ours is 
the best in them with the same number of iterations 
at relatively high NTP environment and that the 
number of iterations should be 120 or smaller. 
 
 
4 Conclusion 
The extremely massive MIMO wireless 
communication systems require the precoding 
method with low complexity and non-stationarity 
channel considered. The SwoR-rKA method is a kind 
of them. The BER performance is better than original 
rKA method. The SwoR-rKA differs from rKA in the 
probability of choosing a column of the channel 
matrix. The policy of SwoR-rKA is to select columns 
corresponding to channel in the better condition. 
However, since it is inefficient to allocate a long 
processing time to columns corresponding to 
channels in good condition. The proposed method in 
this paper, the probability is set to select a channel in 
poor condition more frequently. 

The results of some simulations shows that our 
method was found to be more effective than the 
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Fig. 9 BER performances of original rKA, SwoR-rKA, 
and ours against the normalized transmit power over 
imperfect non-stationary channels. The number of iterations 
in each method is 140. 
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Fig. 10 BER performances of original rKA, SwoR-rKA, 
and ours against the normalized transmit power over 
imperfect non-stationary channels. The number of iterations 
in each method is 160. 
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Fig. 11 BER performances of original rKA, SwoR-rKA, 
and ours against the normalized transmit power over 
imperfect non-stationary channels. The number of iterations 
in each method is 180. 
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Fig. 12 BER performances of original rKA, SwoR-rKA, 
and ours against the normalized transmit power over 
imperfect non-stationary channels. The number of iterations 
in each method is 200. 
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SwoR-rKA method and original rKA method at high 
SNR for both of cases that the base station has 
imperfect and perfect channel information. The BER 
performance of ours shows better than others 
especially at 16dB or more in NTP. With low number 
of iterations in rKA, our method also defeats others 
in BER performance, especially at high NTP. 
Compared to conventional rKA methods, therefore, 
our method can improve the BER performance 
without the increase of computational complexity. 

However, our method can be seen to have the 
residuals as SwoR-rKA has because the BER 
performance seems level off at 30dB or higher NTP.  

For the future work, the improvement method to 
realize linear complexity is required for high NTP 
environment because the number of antennas in 
MIMO wireless communication systems will be 
expected more and more. 
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