
    
Abstract: - The present article examines the relation between the Spectral Density of Excitation to the Spectral 
Density of response in general and particularly in the case of the system “Railway Vehicle-Railway Track”. It 
begins with the general random excitation proceeds to the stationary and ergodic (random) processes and 
expresses mathematically the Spectral Density in these cases. Furthermore, it presents the impulsive excitations 
the Dirac impulse and the relationship between Excitation-Response Spectral Density and specifically for the 
case of the Track Defects and the Motion of the Railway Vehicle.   
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1 Introduction 
Train circulation is a random dynamic phenomenon 
and, according to the different frequencies of the 
loads it imposes, the corresponding response of track 
superstructure appears. The dynamic component of 
the load of the vehicle on the track depends on the 
mechanical properties (stiffness, damping) of the 
system “vehicle-track”, which acts as an excitation 
on the vehicle’s motion  (Figure 1) and vice-versa the 
vehicle’s motion acts as an excitation on the track. 
The most simplified approach of this motion (vehicle 
on Track) is simulated by a SDOF system (Figure 2).  

The dynamic component of the acting load is 
primarily caused by the motion of the vehicle’s Non-
Suspended (Unsprung) Masses, which are excited by 
track geometry defects, and, to a smaller degree, by 
the effect of the Suspended (sprung) Masses. In order 
to evaluate the real defects of the Track and their 
influence on the acting forces we use Track 
Recording cars whose reliability was presented 
recently ([1], [2]).   

In order to calculate the magnitude of this 
dynamic component of the acting Load we use a 
theoretical analysis based on the Fourier Transform, 
approaching the phenomenon as Loads owed to 
forced random oscillations in systems with damping. 
In the following we will present this procedure. The 
forms of the excitations are random by nature and not 
deterministic. 

2 General Random Excitation 
The impulsive loading of structures is caused by 
forces that act over a short time interval (like e.g. 
earthquake). Typical examples of this are also the 
journey of a car along a poor quality road surface, the 
motion of railway vehicles on railway track, the flight 
of an airplane in turbulent conditions in the 
atmosphere, etc. Damping in these cases plays a less 
significant role than in the harmonic or periodical 
loads, where the complete response of the system 
consists of the sum of both a particular and a 
homogenous part. The complete response does not 

matter, in practice, since the homogenous part is 

significantly affected by the damping and, therefore, 

the particular solution is of significant relevance in 

on the engineers’ calculations, as long as the 

excitation is sufficiently far from the resonance area. 
During impulsive loading, the structures studied by 

engineers attain the maximum deflection and, 

consequently, the highest strain for a very short time 

and hence are minimally affected by damping 

phenomena. Damping, however, must be taken into 

consideration in calculations concerning longer 

periods of time. 
Both the excitation and the response in the system 

“Railway Vehicle-Railway Track” are random. If x is 
a random variable and g(x) is a function of the 
variable x, expression y = g(x) is a new random vari- 
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Figure 1. Schematic mapping of a vehicle/car on a 
Raiway Track: mNSM the Non-Suspended Masses 
(under the primary suspension) of the vehicle (the not 
depicted secondary suspension is between the bogie-
frame and the car-body); mTRACK the mass of the track 
that participates in the motion of the Non-Suspended 
Masses (mNSM); mSM the Suspended Masses of the 
vehicle/car-body (above the primary suspension); Γ 
damping constant of the track; hTRACK the total 
dynamic stiffness coefficient of the track; n the fault 
ordinate of the rail running table, and y the deflection 
of the track. The dynamic component is owed to the 
NSM and the SM.    

 
Figure 2. (Left) the motion of a vehicle on a Railway 
Track simplified as a Single-Degree-Of-Freedom 
(SDOF) system; (right) the acting forces on the 
vehicle: the static weight (m·g) plus the dynamic 
component Pdyn.   
 
able defined as follows: for a given ζ, x(ζ) is a 
number, and so is g[x(ζ)] that is specified into terms 
x(ζ) and g(x). The latter, is value y(ζ) = g[x(ζ)] that 
corresponds to random variable y. Thus, every 

function of random variable x is a composite function 
y = g(x) = g[x(ζ)] into domain set f of the 

experimental results οor the measured ones. 
Stochastic process x(t) is a rule that assignes value 
x(t,ζ) of the function, for every experimental or 
measured result ζ. In other words, a stochastic 
process is a family of temporal functions depending 
on the parameter ζ, or equivalently, a function of t and 
ζ. The domain of ζ is the set of all the experimental 
or measured values and the domain of t is the set R of 
real numbers. A stochastic process is called 
stationary, if its statistical properties remain invariant 
to a shift of the origin of time. This means that 
processes x(t) and x(t +Δt) have the same statistical 
characteristics for every Δt ([[3], pp. 86, 285, 297]; 
cf. [[6], pp. 14]).  

If N series of measurements must be executed to 
determine if a quantity x is, for example, lower than 
a limit x0 , this is statistically correct but financially 
disadvantageous. We should then perform tests by 
measuring and recording 10.000 electric locomotives 
or airplanes with thousands of engine drivers or pilots 
per unit to estimate industrial and/or functional 
tolerances. In the real Railway Track, the defects are 
random with wavelengths from few centimeters to 
100 m and we should measure punctually all the 
kinds of defects correctly and the (practically 
infinite) frequencies that they impose on a Vehicle 
([[4], pp. 128]; [[5], Ch.2]). As engineers, based on 
our experience and knowledge, we should be content 
with measurements, on a few units or some 
frequencies of the defects [[4], pp. 132], or if they 
have adequate structural standards and yield adequate 
statistical data. For this reason we presuppose the 
existence of measurements over a long period of 
time.  

 
Figure 3. Calculation of the probability density in an 
ergodic stochastic process (cf. [[4], pp. 133]).   

 
The statistical evaluation of these measurements 

advances along the time axis and not by the number 
of items (Figure 3). The statistical processes that 
allow the use of such methods are called ergodic and 
these are stationary in nature.  
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3 Stationary Ergodic Processes  
The mathematical analysis of the system “Railway 
Vehicle-Railway Track” consider the system as 
stationary and ergodic.   

We can describe a stationary process x(t) as mean-

ergodic ([[3], pp. 428]; [[7], pp.473-8];  cf. [8]) when, 

after we have defined its time average value:                                             

                              , which is also a random 

variable with mean value: 

  
                                                                     (3.1) 

  

Clough and Penzien [[7], pp.473-478] describe a 
sinusoidal function: 

                                                                            (3.2) 
 
where r = 1, 2, …., ∞ , with xr(t) the rth member of 
the set, A the fixed amplitude of each waveform,  
fixed circular frequency and θr the sampled value of 
a random phase angle. This process shows that it can 

be classified as random, since it contains many 

frequency components of a waveform (a 
corresponding description exists in [8]), and vice-
versa any (random) waveform can be approached and 
analyzed in an infinite series of sinusoidal 
waveforms.   
Then if the variance σ2

T →0 as T→∞ then (3.1) gives: 
  
                                                                     (3.3) 
 
In this case, time average         , which is calculated 
from a single realization of x(t) approaches mean 
values         , with a probability that tends to the unity 
(1). If this is true, we can say that x(t) is mean-ergodic 
if its time average           tends to the mean value             
as T→ ∞. 

As illustrated in Figure 3, p(x0)·dx specifies the 
probability of a measured value (or experimental) 
lying between x0 and x0 + Δx and the readings being 
executed in all series of measurements at a given 
instant. In the case of ergodic processes, we must 
determine how often the measured values lie between 
x0 and x0 + Δx. The ratio of information in one full 
period of measurements, gives the probability (where 
T is the largest possible from a mathematical point of  
view): 

                                                                           (3.4) 
 
If we divide temporal period T, into small equal 

intervals Δt and consider the values x(t) in the 
temporal cycle of each Δt, we define N as the number 
of intervals (Τ = Ν · Δt) and measure the number of 
intervals Νx, for which x(t) lies between x0 and x0 + 

Δx where Δx is very small, then: 
 
 

 
 
 
 
                                                                          (3.5) 
 
 

The above functions, as a rule, converge within a 
finite time T, to a value of stationary process and 
practically T → ∞ is not needed ([[9], Ch.8.1]; [[7], 
Ch.21-2]; [[4], Ch.13-15]). In addition to the above 
functions, two more are very helpful in stochastic 
processes: τhe auto-correlation function and the 

spectral density. These are quantities that can easily 
be measured experimentally and are useful for the 
analysis of stochastic excitations in dynamic analysis 
([[4], pp.438-441]; [[10], pp. 160-70, 133, 239]). 
The auto-correlation function for measured values at 
t1 and t1 + Δt: 
 
 
                                                                    (3.6) 
 
The validity of the following formula is confirmed: 
                                                                    (3.7) 

For all processes with x̅ = 0, the following applies: 
                                                                     (3.8) 

For stationary processes, Φx does not depend on 
time t1, but only on the time difference Δt, in the 
series of measurements. Therefore, time t1, can be 
ignored and we can have the simplified expression: 
                                                                       (3.9)                                            
and x is a stationary process.   
In addition Φx(Δt) is a symmetric function for 
stationary processes: 
  
                           
 

                                            (3.10) 
where t2 = t1 – Δt. 
For stationary processes we can easily prove: 
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Φx(0) ≥ | Φx(Δt)|, and  
 
                                                                       

( ) ( ) ( )x x xΦ 0 2Φ Δt Φ 0 0=  +            (3.11) 
Since, for ergodic functions:  
  
 
                                                                       (3.12) 
 
 
 
 
4 Spectral Density in Random 

Processes 
The spectral density function Sx is of great 

importance to the analysis of stochastic processes. 
Figure 4 illustrates characteristic cases of spectral 
density of random functions. 
 
 
 
 
 
 
Figure 4. Spectral Density or Power Spectrum Sx(Ω) 
and mean square value (average value x̅2) (cf. [[4], 
pp. 138]). 
 

In the theory of stochastic systems, the spectra are 
linked to Fourier transforms. For deterministic 
systems the spectra and the Fourier transformation 
are used to represent a function as superposition of 
exponential functions. For random systems (or 
signals) the concept of spectrum has two interpre-
tations.  

a.-The first one includes transforms of averages, 
and is essentially deterministic.  

b.-The second one includes the representation of 

the (random) process as a superposition of 

exponential functions (namely of a sum of 

infinite sine and cosine functions) with 

random coefficients.  
The power spectrum or spectral density of a 

stochastic system that is described by a function x(t) 
is the Fourier transform of the system’s auto-
correlation Φx(t) 12.  

If x(t) represents the excitation and since a 
stochastic process, at least theoretically, can last 
indefinitely, it is not a prerequisite that the following 

equation will apply:                                          (4.1) 
even if the mean value x̅ = 0.       

There is greater possibility that Φx(Δt) will be 
finite, that is the absolute value of Φx(Δt), which is 
the area below the curve (Figure 5). From the 
continuity of curve x(t), and for small Δt, it can be 
concluded that both x(t) and x(t+Δt) have the same 
sign and therefore Φx(Δt) must increase with time. 
There is no predictable behaviour or relationship in a 
random process between x(t) and x(t+Δt) for great 
values of Δt. Φx(Δt) → 0 for great values of Δt, 
because contradictive values may arise in this case. 

 
 

 
 
 
 
 
 

 
Figure 5. Typical auto-correlation function for 
stationary process with zero mean value (cf. [[4], pp. 
136]). 

 
Let us consider a non-periodic auto-correlation 

function Φx(Δt) that satisfies the equation (4.1). 
When this equation is valid it allows unlimited use of 
the Fourier integral (with no restrictions) for the 
mapping of any function x(t). To calculate this 
function we can apply the integral for the calculation 
of the coefficients of the Fourier series [[4], pp. 121, 
Eqn. 393],  
 
                                                                           (4.2) 
 
which is the frequency spectrum of the excitation for 
non-random processes ([[4], 121-122], [[4], pp. 319]) 
and we get: 
 
  
  
where:  
 
                                                                     (4.3.a-b) 
 
Sx(ω) is the spectral density function. Furthermore, 
Sx(ω) is the Fourier transform of the function Φx(Δt) 
since Φx(Δt) is the inverse Fourier transform of Sx(ω).  
It should be noted that, if Φx(Δt) is defined as Φx(Δt) 

= E[x(t1)·x(t1+Δt)], then the factor 1/2π before the 
integral does not exist in the Eqn. (4.3.a) but in (4.3.b) 
(see [[9], pp. 269]).   

The WIENER-KHINCHIN theorem [[4], pp. 237] 
is derived from (3.9) and (4.3.a): 
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The shaded area below the spectral density function 

(Figure 4) represents the mean square value of the 

process. 
Using complex numbers in (4.3.b) and the Euler 

equation for complex numbers, since the imaginary 
part is eliminated, because Φx(Δt) is symmetrical and 
sin(ωΔt) is anti-symmetrical with respect to Δt = 0 
and as a result the areas below the anti-symmetrical 
integral cancel one another out [[9], pp. 271], we get: 

 
  
  
  
  
  
  
                                                                           (4.5) 
 
It can be easily proved that: 
 
                                                                            (4.6) 

 
The spectral density function is real, it does not 

contain an imaginary part and is symmetrical around 

position ω = 0, as the autocorrelation function also 

is.  
 
 

5 Impulsive Excitation Functions 
 
5.1 Impulsive Excitations of General Form 

In random phenomena it is not the specific values that 
a function f(t) takes at a point i, at instant t1 that we 
are looking for, but, on the contrary, the probability 
that a function f(t) will be greater than a value k0 at a 
point i, at instant t1 , where f(t) can be the excitation 
(acting force) Pi(t) or the response (deplacement) ui(t) 
or vice-versa the random waveform of the rail 
(deflection plus the anomalies of the rail running 
table) can be the excitation and the acting force the 
response. A typical result of a stochastic excitation 
would be, for instance, that ui(t) (or Pi(t) relevantly) 
has a 90% probability to be greater than e.g. 0.30.  

As it was already mentioned in paragraph 2 above, 
during impulsive loading, the structures studied by 

engineers attain the maximum deflection and, 

consequently, the highest strain for a very short time 

and hence are minimally affected by damping 

phenomena. Damping, however, must be taken into 

consideration in calculations concerning longer 

periods of time. In a Railway Track, with 
eigenfrequency of 50-75 Hz, the structure does not 
deform due to the much higher frequency of the 
running load.    

An example of non-periodic excitation is the 
rectangular impulse of finite duration (Figure 6), 
which is described by the following equation (5.1): 
Pi = P0, for 0 ≤ t ≤ t1 and  
Pi=0 for -∞ ≤ t < 0 and t1 < t ≤ +∞                (5.1) 

Figure 6. A rectangular impulse of finite duration; an 
example of non-periodic excitation 
 
The complex frequency spectrum is ([[4], pp. 121, 
Eqns. 3.9.3, 3.8.3a, 3.9.7]; [[4], pp. 319]): 
 
                                                                            (5.2)  
 
where: 
 
                                                                            (5.3)  
  
  
  

 
                                                                    (5.3.a) 
 
 
 
 

By developing the integral factor 
 
 

 
where we have an integral of the form [[11], pp. 181]: 

 
  
 
 
                                                                       (5.3.1) 
 
The solution of the integral sin(αx)·dx/x is calculated 
in the paragraph (5.1) below. 
 
5.2 Integral around a Point of Discontinuity 
We have to solve an integral of the form: 
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               with a point of discontinuity at the point x = 

0; we consider the function:                    . 

Firstly, as an integration line of the function, we 
consider the contour C of Figure 7, with the path 
according to the direction of the arrows. From the 
interior of the contour the point z = 0, which is the 
pole (point where the function is not continuous) of 
the function f(z) is excluded. There are two half 
circumferences with radii ρ and R. From the Cauchy 
integral ([[11], pp. 106-27]; [[12], pp.118]) we 
derive: 
 

 
 
 
 
 
 
 
 

 

Figure 7. Contour C around the pole (z=0) [point of 
discontinuity] of the function f(z). The integral is 
calculated for ρ→0 (cf. [[4], Ch.10, Annex]). 
  
 
 
 
                                                                            (5.4) 
 
 
If ρ→0 and R→∞, then Eqn (5.4) constitutes an 
integral from -∞ to +∞ with the exception of the point 
0. The complex number z has the form: 
 
                                                                          (5.5) 
 
Jordan’s lemma [[11], pp. 177] states that if a 
function f(z) is continuous everywhere at the upper 
side of the complex plane and if |f(ζ)| ≤ M/ρk where ζ 

= ρ·ei·θ, with k > 0 and M constant, then:   
  
                                                                          (5.6) 
 
where Cρ is the semicircle (0, ρ) located at the half 
plane that was defined above, and m is a positive 
constant. Hence:  
 
                                                                     (5.7) 
 
We have to calculate Eqn (5.6) and for this we 
develop the function into a Laurent series at the point 
z = 0. 

 
  
 
 
                                                                        (5.8) 
Where P(z⸍) is a polynomial, called the normal part 
of the power series, with z⸍ = 1/(z-0) = 1/z and P(z⸍) 
→ 0. Hence (see Eqn. 5.5):  
 
  
 
 
                                                                     (5.9) 
 
 
Thus, Eqn (5.4) becomes (for ρ→0 and R→∞): 
 
 
 
 
                                                                    (5.10) 
 
and, after equalizing the imaginary parts: 
 
                                                                     (5.11) 
 
Similarly we can prove that: 
 
                                                                      (5.12) 
 
therefore,   
  
  
                                                                          (5.13)  
 
 
 
Thus we have just calculated one tern of the Eqn. 

(5.3.a). 
 
5.3 Calculating the Conditions at the Limit 
In Eqn. (5.3.a) we have to calculate the second 
integral: 
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The integral:  
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                                                                         (5.15) 
 
Respectively, setting   ω⸍=ω+ωn: 
 
                                                                                                                                                
 
 
                                                                     (5.16) 
 
and also:  
 
                                                                      (5.17) 
 
Hence: 
t ≤ 0  t-t1 < 0 sign(t) = sign (t-t1) = -1 1st case. 
 
 
 
 
 
 
  
 
 
 
 
                                                                    (5.18.a) 
 

Respectively, taking the signs of t and t –t1 for the 
other two cases (0 ≤ t ≤ t1 and t1< t) we arrive at the 
following two equations (5.18b) and (5.18c) for up(t): 
 
  
 
 
 
Consequently the second integral of the Eqn. (5.3a) 
becomes: 
 
 
  
                                                                          (5.19) 
 
 
5.4 Particular and Complete Response 
The particular solution for the response is (5.20.a): 
 
  
 
 
 
 
 

The engineer’s sense and inspiration lead to a 
particular solution of the form: 
  
                                                                        
                                                                    (5.20.b) 
 
 
with points of discontinuity at instances t=0 and t=t1. 

This particular solution does not contain a 
homogenous part. Therefore, homogenous terms 
should be added (sines, cosines) to cover the whole 
range of real numbers (-∞, +∞). The complete 
response of the system can also be obtained with the 
assumption of initial conditions u(t) = u⸍(t) = 0. 

 
  

 
                                                                  (5.21.a) 
Hence, at the upper limit t = 0:  
 
                                                                  (5.21.b) 
 
 
Applying Eqn. (5.21.b) to the Eqn. (5.18.a) for the 

case t = 0, when 0 ≤ t ≤ t1: 
 

  
 
 
 
 
 
                                                             

                                              , when 0 ≤ t ≤ t1 (5.22). 
 
When t1 ≤ t ≤ +∞, the complete solution is: 
 
 

 
                                                                   (5.23). 

Its first derivative: 
 
 

 
                                                                  (5.24)                                                                     

From Eqn. (5.22) the conditions at the limit for t = t1 
give: 
                                          ,  

                                                                  (5.25) 
 

For t = t1 Eqns (5.23) and (5.24) have as values from 
(5.25): 
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                                                                          (5.26a) 
 
 

 
 
 
                                                                    (5.26b) 
 
Solving the system of the two Eqns (5.26a) and 

(5.26b) we find: 
  

                                                                    (5.26c) 
 
Hence, the variable part of Eqn. (5.23) for t = t1 

becomes: 
 
 
 
                                                                    (5.26d) 
 
Therefore, the variable part is equal to the steady 

state (since for t = t1 then cos ωn(t-t1) = 1) (5.26e):  
 

  
                                                       for t1 ≤ t ≤ +∞ 

 
(a) We get u(t) = 0 for t ≤ 0. 
(b) If we introduce these values into the complete 

solution [Eqn. 5.23] in the time interval 0≤ t ≤ t1, we 
get: 
 
 
which has the particular solution at t1:  
 
  

(c ) These values provide the initial conditions for 
the third time interval t ≥ t1, for which we get: 
                                                               . 
 
The velocity is the first derivative: 
 

Its gradient is P0·ωn
2 for t = 0; therefore, the 

velocity is undergoing a significant change as a 

result of one rectangular impulse of very short 

duration. 

5.5 Strength of Impulse – Duhamel Integral 
We define in general form: 
 
                                                                       (5.27.a) 
 
The Strength (Power) of the excitation Impulse and 
the Strength of a Rectangular excitation Impulse: 

Ii = P0·t1                                                    (5.27.b) 
 
Integration of the differential equation without taking 
into account the damping and under the condition that 
the phenomenon takes place within a very short time 
interval (for k = 1, m = 1/ωn

2): 
  
  
 
this leads to the following (for t = t1):  
 
                                                                     (5.28) 
 
assuming a system initially at rest. Whereas the 
power of the impulse, even for a short time duration, 
can attain a significant value owing to a great 
amplitude of Force P0, the area below the curve u(t) 
is practically zero, as a result of the zeroing of the 
gradient (t → 0) at the beginning of the curve (for this 

reason                     ). 

At the limit                                                     (5.29) 

where k is a finite number. 

In this case the applied Force is converted to the 
Dirac Impulse. The Dirac function is defined as P(x) 
= 0 for x ≠ 0 and P(0) = +∞ since  
  
  
 

Physicists (and Engineers) are aware that this is 
not a real function, but rather a symbolic tool. For 
Electronic Engineers the Dirac function is often 
considered to be the limit of an Impulse, of amplitude 
Δt and magnitude 1/Δt when Δt → 0. For more, see 
([10]; [8]). Different impulses of short duration with 
a random form can also be approximately defined by 
the Eqns (5.27.a and b). Since the strength of impulse 
Ii is known, the exact fluctuation of P(t) is not of 
interest from a practical point of view. 

An important characteristic of the above 
theoretical analysis is that the excitation is obtained 
from Eqn. (5.28). We know that, in every case, the 
maximum displacement occurs at the phase of free 
oscillation. By applying the initial conditions:  
                                                                          (5.30)  
The response of the system can be expressed by: 
                                                                         (5.31)  
For a Dirac Impulse (t1→ 0) it is further simplified: 

                                                                (5.32)   
Eqn. (5.32) is analytically precise, whereas Eqn. 

(5.31) is merely an approximation for impulses that 
are of finite, but short time-duration t1. We can 
consider t1 < Ti /4 as a limit. 
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                                                                       (5.33) 
 
Using Eqn. (5.33) the Eqn. (5.31) gives: 
                                                                        (5.34) 
 

 
Figure 8. Response to a long duration excitation (cf. 
[[4], pp.145]). 
 

In Figure 8, we notice, by comparing the precise 
and the approximate solution –based on the power of 
the excitation impulse–, a significant deviation for 
the phase shift, whereas the maximum amplitude 

which is of major importance for application to 

structures, does not seem to be affected significantly 
(its deviation does not exceed 11%); see also [[9], pp. 
238]. 

 
Figure 9. Excitation of generic form, namely, an 
impulse of finite time-duration (upper illustration) 
and response (lower illustration); cf. [[4], pp. 146].  
 

Figure 9 illustrates a generic form excitation that 
can be approached by an infinite sequence of 

impulses. At time instant t̅, an instant infinitesimal 
impulse is recorded:                
                                                                (5.34) 
that causes the response (5.35):  
  
  
  

Starting from an at-rest condition, by integration 
of the sequence of all impulses, we get the complete 
response of the system: 
  
                                               (5.35.a), 
 

which is known as the Duhamel integral, and if we 
pose: 
                                                                   (5.35.b), 
it is transformed to: 
  
                                                                  (5.35.c)  
 

If the structure does not start from an at-rest 
condition at t = 0, it is necessary to superimpose an 
additional free oscillation: 

          
 
                                                                                            

                                                                (5.36)   
Numerical calculation methods, such as the 

Romberg, Gauss, Simpson, etc, have been developed 
for the calculation of Duhamel integral. 

In any case we can assume that the phenomenon 
starts at t = 0.   

                        
 
6 Random excitation in a system with 

damping, with one degree of freedom 
From the Duhamel integral Eqns (5.35.c) we find the 
response in the time domain. The basic second order 
differential equation of motin which is applied to the 
system “Railway Vehicle-Railway Track” (see [14], 
[15]) is: 
 
                                                                       (6.1) 
Where Pi(t) is presumed to be an ergodic random 
force with a mean value equal to zero. The 
mathematical expression of the term Pi(t) is [[4], pp. 
147]: 
  
                                                                        (6.2) 
 
Using Eqn. (5.35.c) of the Duhamel integral we can 
calculate the response of the system. The Eqn. 
(5.35.b) represents the response of the system to a 
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unitary Dirac Impulse. We should calculate this 
response; we firstly begin with the solution of Eqn. 
(6.1) for both cases (a) Pi(t) = 0 and (b) Pi(t) ≠ 0. 
(a).- Pi(t) = 0 and we derive:  
                                                                        (6.3.1). 

If  ζi < 1 (under-critical damping): 
( ) ( )nω t

i ii
u t e a b t−

= +                               (6.3.2). 

If  ζi = 1 (critical damping): 
                                                                       (6.3.3). 
 

If  ζi > 1 (over-critical damping), where: 
                                                                        (6.3.4). 
 
Proportionally to the above, which applies for a free 
system without damping, we can examine the 
equation and find a solution for an under-critically 
damped system, for which the initial conditions are 
u(0) and u⸍(0) (see [[4], pp. 100, Eqn. 3.3.5]): 
The particular solution becomes (6.4.1): 
                                                                            
   
 
and (6.4.2), 
  
  
 
 
  
  
  
 

(b).- If we consider a forced oscillation Pi(t) ≠ 0 with 
damping, the solution of the differential equation 
(6.1) now consists of two parts: a homogenous part 
which we have come across in Eqns. (6.3.1) to 
(6.3.3), and a particular solution up that depends on 
the type of excitation (6.4.3a):  
( ) n i

i i

ω ζ t
i D i D p ii

u t e (a sin(ω t) b cos(ω t)) u (t)−  
=    +   +  

this equation applies to the most common types of 
under-critical damping. 

If we pose in Eqn. (6.2) P0/k = 1, then: 
                                                                      (6.4.3b)  
and its response:     
                                                                   (6.4.3c) 
where: 
 
                                                                     (6.4.3d) 
 
 
 
Recalling from the theory of complex functions:  

                                                                        (6.4.4)  
 
where: 
                                                                       (6.4.5)  
                                             

Value 1/r gives the absolute value of the complex 
frequency response characteristic Fi and the response 
factor of displacement (amplification factor) 

idR : 
 

  
                                                                        (6.4.6) 
 
 

Angle φi specifies the phase shift: 
  
 
                                                                        (6.4.7) 
 
 
 

The particular solution for an excitation of the 
form (6.4.3b) is: 
 
  
                                                                        (6.4.8) 

As we examined before, the homogenous solution 

of the system with damping, is gradually damped and 

the particular solution (6.4.8) represents the 

oscillation of the steady state condition of the system. 

The damping determines the phase shift of the 

system’s response through Eqn. (6.4.7), which –for a 

system without damping– is 0 or π. Amplification 

factor 
idR always remains finite, even in the case of 

resonance (ω = ωn). 
After the above analysis, we come back to the 

solution of Eqn. (6.1) and (5.35.b) that represents the 
response to a Dirac impulse. From the particular 
solution (6.4.2), setting as initial conditions: 
                                                                         (6.4.9) 
that corresponds to the Dirac impulse, introducing 
the necessary phase shift and assuming a weak 
damping, we have the solution (the only difference to 
the response is that it decreases exponentially): 
  
                                                                        (6.4.10)  
 
this formula can be applied up to the critical damping 
ζi = 1. For ζi = 0 the solution (6.4.10) turns into 
(5.35.b). Both Eqns. (6.4.10) and (5.35.b) must be 
complemented by: 
                                                                      (6.4.11) 
since no response can exist before the application of 
the (unitary) Dirac impulse. 
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Nevertheless, it should be noted that random 
excitation Pi (t) does not start at instant t̅, but it could 
go on –at least in theory– even before t̅, for an 
indefinite period of time. Eqn. (5.35.b) can be written 
(Duhamel integral):  
 
                                                                     (6.4.12) 
 
 
 
 
where θ = t - t̅ . 
The mean value of the response is: 
 
  
 
 
 
 
 
                                                                      (6.4.13) 
 

Here it should be noted that the calculation of the 
mean value for an ergodic process u(t) is done on the 
axis of time t. But, in this case, since only Pi(t - θ) 
depends on time t, the mean value can be extracted 
before the integration. Since excitation function Pi(t) 
is also ergodic and stationary, its mean value P̅i has 
to be independent of time. Hence the mean value in 
(6.4.13) is obtained. A very important rule is derived 
from the above: if the mean value of the excitation is 
zero, then the mean value of the response is also zero. 

The next step is the calculation of the response 
autocorrelation function. Here we also face an 
expectation value: 
                                                              (6.4.14) 
  
 
 
 
 
 
 
 

 
 
 
Here Φp is the excitation autocorrelation function 

and Φu is the response autocorrelation function. In 
practice, their detailed calculation is difficult. 

From equations (6.4.13) and (6.4.14) it can be 
derived that response u(t) is also stationary for a 
stationary excitation Pi(t), since neither the mean 
value u̅ nor autocorrelation function Φu(Δt) depend 
on time t. 

The transformation of spectral density Sp of the 
excitation into spectral density Su of the response can 
be easily calculated. For this purpose, we use the 
definition of the Spectral Density (Eqn. 4.3.a-b) and 
the Eqn. (6.4.14) and we calculate the corresponding 
Spectral Density from the autocorrelation function: 
  
                                                         (6.4.15) 
 
 
 
 
 
 
 

The statistical measurements taken for the 
response also contain some expressions with 
integrals. Nevertheless, they can be simplified 
through the Fourier integral (transform) method, 
producing impressive results (for an easy calculations 
of the Fourier integral, see [[13], paragr. 4-1]). Eqn. 
(6.4.12) is the Duhamel integral and the response in 
the time domain.  If we apply the Fourier 
transformation as in the non-periodic functions of 
Eqns. (4.2) to (4.3.a-b) to an excitation impulse with 
unit value at θ = 0, then we derive the following 
response: 
  
                                                              (6.4.16) 
 
which is the response in the frequency domain, where 
the complex characteristic response frequency: 
 
                                                                (6.4.17) 
 
 
and the frequency spectrum of the excitation impulse 
becomes (introducing a new time variable θ = t – t̅) 
[see [[4], pp. 153, n.21, pp. 119] and [[7], 98-9]):  

   
                                                                (6.4.18) 
 

We get the above result because Pi fluctuates only 
inside a range of small values of θ, where e-iωθ ≅ 1.  
Then the integral gives the impulse and then it is 
indeed 1. From Eqn. (6.4.16) and (4.4.15) we find: 
 
                                                                (6.4.19) 
 
The comparison with equations (4.2) to (4.4)  gives 
the expression Fi(ω)/2π for the Fourier transform of 
function h(θ). According to Eqn . (4.4) we have:  
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where the complex characteristic frequency is 
defined by the simple Eqn (6.4.17). Hence the 
integrals with infinite limits can be elegantly 
calculated and, instead of Eqn. (6.4.13) we get for the 
mean value of the response, when ω = 0:  

                                                                     (6.4.21) 
For the Eqn. (6.4.15) we have: 
 
 
 
  
 
  
                                                                     (6.4.22)  
here *

iF is the complex conjugate of Fi and Rd is the 
real amplification factor of equation (6.4.15), that 
coincides with the modulus of the complex 
characteristic frequency. 
We have:  
  
                                                                    (6.4.23) 
 
 
Equation (6.4.15) can be now written into the 
simplified form:  
                                                                    (6.4.24) 
 
 
7 Transformation Functions in Time 

and Frequency domains                  
From the Duhamel integral (5.35.a, 5.35.c, 6.4.12) 
we find the response:  
 
                                                               (7.1) 
 
that applies for the time domain, whereas for the 
frequency domain: 
 
                                                               (7.2) 
 
which derives from Eqn. (6.4.16); we should 
underline that we use the general form Pi(t) instead 
of a unitary load (as the Dirac Impulse). From Eqn. 
(6.4.18) we derive: 
 
                                                                 (7.3) 
 
and bearing in mind that θ is a time variable, from 
Eqn. (6.4.17) we have the frequency response 
function, which is a complex function: 
 
 
 

 
                                                          (7.4) 
 
 
 
and also the response function to a unitary impulse 
(from Eqn. 6.4.10): 
 
                                                                        (7.5) 
 
It is characteristic that Fi(ω) and h(t – t̅) are related 
through the Fourier transform and the inverse 

Fourier transform. From Eqn. (6.4.20) we have (7.6): 
 
 
 
and from Eqn. (6.4.19), we have (7.7): 
  
 
 
 
8 Relationship between Excitation-

Response Spectral Density: Track 

Defects and Motion of the Vehicle 
If we have the system “Railway Vehicle-Railway 
Track” then the condition and the position in space of 
the rail running table is the excitation (Input) and the 
movement of the vehicle is the response (Output).  

From Eqn. (6.4.15) we have (8.1): 
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and using Eqns. (7.6) and (8.1), we find Eqn. (8.2) 
below (see also [[5], Ch.2]): 
 
 
where frequency ν has two parts one real and one 
imaginary.  

However, the spectral density function is real, it 

does not contain an imaginary part (see paragraph 4); 
the Spectral Density of the response (output) Su is 
related to the Spectral Density of the excitation 
(input) with a real number |H(iω)|2. Consequently if 
we find or measure the Spectral Density of the input 
we can calculate the Spectral density of the output. 

In the case of the Track defects, should be clarified that 
different wavelengths address different vehicles’ 
responses depending on the length of the cord/base of 
measurement. This is of decisive importance for the 
wavelengths of 30 – 33 m, which are characteristic for very 
High Speed Lines ([1], [2]). In the real tracks, the forms of 
the defects are random with wavelengths from few 
centimetres to 100 m. The defects constitute the “Input” in 
the system “Vehicle-Track” since the deflection y and the 
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are the “Output” or “Response” of the system. The 
accuracy of the measurements of the defects is of utmost 
importance for the calculation of the deflection y and the 
Reaction R; this accuracy, due to the bases of the 
measuring devices/vehicles, is fluctuating. Thus we should 
pass from the space-time domain to the frequencies’ 
domain through the Fourier transform, in order to use the 
power spectral density of the defects, especially for 
defects, with (long) wavelength, larger than the measuring 
base of the vehicle.  

In the case of random defects then we do not use the 
function f(x) but its Fourier transform: 

 
                                                               (8.3) 
 
In practice we don’t know the function of real defects 

y(x) but the measured values f(x) (see Eqns 23 below), 
from the recording vehicle, and we imply that:   

 
                                                                           (8.4) 
 
 

where SZ(Ω) is the spectral density of the Fourier 
transform of the real defects (input in the track recording 
vehicle), SF(Ω) is the spectral density of the Fourier 
transform of the measured values (output) and K(Ω) is a 
complex transfer function (of the Recording Vehicle/Car), 
called frequency response function, transforming the 
measured values of defects to the real values. For very 
High Speed Lines we should analyze the system “railway 
track – railway vehicle”. The calculation of the spectrum 
of track defects is described in [3] (paragr. 6) and [6] 
(pp.155-158). 

 
 

9 Conclusions – Spectral Density in 

Measurements on Railway Track 
For the reliability of the measurements via the Track 
Recording Cars/Vehicles see [1], [2].  In general, in order 
to approach the matter of the reliability of the measured 
values of the track-defects by the Track Recording 
Vehicles/Cars and their Confidence Interval, we should 
examine the transfer function |H(ω)| of the recording 
vehicle which presents minimums and zero-points. In the 
real conditions, the defects are random with wavelengths 
from few centimeters to 100 m. Since the length of the 
vehicle’s measuring base is much shorter than 100 m, we 
should pass from the space-time domain to the 
frequencies’ domain through the Fourier transform, in 
order to use the power spectral density of the defects. 
Furthermore, in the case of random defects, we cannot and 
do not use the functions f(x) and z(x) but we can use their 
Fourier transforms. 

In practice through the Spectral Density of the Track 
defects consist of four separate components ‘Spectral 
Densities’ and this is out of the scope of the present paper. 
Since in the very High Speed Lines (Vmax > 200 km/h) 
the crucial Track defects are of very long waveform (l > 

33 m, cf. [1], [2]), here we are interested in the forms of  

 
Figure 10. Physical realization of the Fourier 
transform: the surface f(t)·cos2πνit shown sliced in 
one of two possible ways ([5], pp.160]; [[10], pp.23]; 
[[16], 20]). (Left) the space domain f(t) and t; (right) 
the frequency domain: its ordinate is equal to the 
surface of the component functions.  
 
these defects. Their Spectral Density of the Track Defects 
is one continuous spectrum diminishing towards the small 
wavelengths. The French Railways had determined that in 
one analytic form [[16], pp.333]: 
 
                                                                         (9.1) 
 
where, Ω is equal to 2π/λ, e the average of the total 
signal recorded, a, b are constants. 

In practice this Spectrum can be exploited for 
wavelengths between 100 m and 3 cm.    
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