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Abstract: We consider buildings of various shapes and their resistance against earthquakes. The 5-
storey buildings are considered as a chainh of tightly connected oscillators. They are modelled by a
linear system of ordinary differential equations which suffers forced oscillations. We provide results of
numerical experiments where the parameters are given certain realistic values and the earthquake is
interpreted as a periodic force with certain period. Four types of buildings are considered, the rectangle,
the dumbbell-shaped, V-shaped and pyramidal ones.
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1 Introduction
The problem of vibrations in mechanical systems
is important from practical point of view and in-
teresting as a descent object for research. Let us
recall elementary harmonic oscillations. Free har-
monic oscillations and their chracteristics, such as
period and frequency, depend only on the elastic-
ity coefficient in an equation. Taking into account
damping makes consideration more realistic and
leads to exponential solutions and exponentially
decaying oscillatory ones.

Considering forced vibrations is another step
towards generalization. The respective differen-
tial equation may have the form

x′′ + 2δx′ + ω2x = F (t), (1)

where x is a displacement from the equilibrium
state, 2δx′ is a description of damping, ω is the
proper frequency of a system, F (t) is the external
force, depending on the time t.

The external force may be periodic with its
own frequency θ. For a particular choice of F (t) =
A sinβt, the general solution of (1) has the form

x(t) = u(t) + B sinβt + C cosβt, (2)

where u(t) is a general solution of the homoge-
neous equation, and B sinβt + C cosβt is a par-
ticular solution of (1). The solution u(t) con-
tains two arbitrary constants, but B and C can
be computed. In presence of damping u(t) be-
comes small and tends to zero, as t → +∞, but
the second part of a solution is periodic wth the
period 2π/β. If damping is neglected, and peri-
ods of u(t) and external force F are the same, the
resonance phenomenon may occur and solutions
x(t) may become unbounded.

In this article we take our motivation from the
paper [2], where forced vibrations of multi-storey
buildings, caused by earthquakes, were consid-
ered. The authors used a linear model of forced
vibrations, where the dimensionality of the re-
spective system of ordinary differential equations
is equal to the number of storeys of a building un-
der consideration. An interesting feature of the
paper [2] is that the authors consider buildings of
various shapes, provided that buildings are ver-
tically symmetrical and the mass of any storey
in center symmetrical also. Generally they have
considered five types of buildings, including two
pyramidal forms like letters ∆ and V.

2 Problem Formulation

We consider behavior of vertically symmetrical
buildings under forced vibrations. We are moti-
vated by the paper [2], where forced vibrations
of multi-storey buildings, caused by earthquakes,
were considered. The authors used a linear model
of forced vibrations, where the dimensionality
of the respective system of ordinary differential
equations is equal to the number of storeys of
a building. An interesting feature of this pa-
per is that the authors consider buildings of vari-
ous shapes, provided that buildings are vertically
symmetrical and the mass of any storey is center
symmetrical also. Generally they have considered
five types of buildings, including two pyramidal
forms like letters ∆ and V.

The resistance of three-storey buildings to ex-
ternal forces of the form Eω2 cosωt can be de-
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scribed by the system of the form ([2])





m1x
′′
1 = −k1x1 + k2(x2 − x1)

−c1(x′1 − x′2) + m1Eω2 cosωt,
m2x

′′
2 = −k2(x2 − x1) + k3(x3 − x2)

−c1(x′2 − x′1)− c2(x′2 − x′3) + m2Eω2 cosωt,
m3x

′′
3 = −k3(x3 − x2) + k4(x4 − x3)

−c2(x′3 − x′2)− c3(x′3 − x′4) + m3Eω2 cosωt,
m4x

′′
4 = −k4(x4 − x3) + k5(x5 − x4)

−c3(x′4 − x′3)− c4(x′4 − x′5) + m4Eω2 cosωt,
m5x

′′
5 = −k5(x5 − x4)

−c4(x′5 − x′4) + m5Eω2 cosωt.
(3)

The stiffness parameters ki are taken as a con-
stant k for each floor with a value of 10000 units.
The damping parameters ci are also taken as a
constant c for each floor with a value of 500 units.
The amplitude of the external force (earthquake)
is set to E = 10, the frequence ω = π

3 or π
2 or π,

which correspond to frequences of seismic waves
[3]. The masses mi of i-th floor depend on the
shapes of buildings. The basic valiue is m = 1000
tonn, the increment mδ = 200.

We accept the assumptions from [2]:

(i) The floors have masses m1 to m5. Each
floor is assumed to be a point mass concentrated
in the centre of each floor.

(ii) A linear restoring force acts on each floor
that is incorporated in the model by the stiffness
factor k1 to k5.

(iii) There is a damping force which is directly
proportional to the damping constants c1 to c5

between the floors.

(iv) A horizontal earthquake oscillation,
E cosωt of the ground with amplitude E and
acceleration a = Eω2 cosωt, produces a force
F = ma = mEω2 cosωt on each floor of the
building.

Time is measured in seconds. Frequency is
measured in hertzs (Hz). Other parameters are
measured in universal units suggested in [2]. We
make also several simplifying assumptions. We do
not take into account the duration of the vertical
component of ground motion.

In all illustrations the deviations of floors (gen-
erally from the 3rd one to the 5th floor) with re-
spect to the vertical axis of symmetry of a build-
ing are depicted. The dashed curve is for the
seismic wave of a given frequency.

3 Recktangular form
The system (3) has the form





mx′′1 = −kx1 + k(x2 − x1)
−c(x′1 − x′2) + mEω2 cosωt,
mx′′2 = −k(x2 − x1) + k(x3 − x2)
−c(x′2 − x′1)− c(x′2 − x′3) + mEω2 cosωt,
mx′′3 = −k(x3 − x2) + k(x4 − x3)
−c(x′3 − x′2)− c(x′3 − x′4) + mEω2 cosωt,
mx′′4 = −k(x4 − x3) + k(x5 − x4)
−c(x′4 − x′3)− c(x′4 − x′5) + mEω2 cosωt,
mx′′5 = −k(x5 − x4)
−c(x′5 − x′4) + mEω2 cosωt.

(4)
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Oscillation of the floors 3,4,5 (black, blue, red),
ω = π/3
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Oscillation of the floors 3,4,5 (black, blue, red),
ω = π

4 Dumbbell form
The modelling system of ODE is the system (3),
where m1 = m5 = 1000, m2 = m4 = 800, m3 =
600, ki = k, ci = c, E = 10.
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Oscillation of the floors 3,4,5 (black, blue, red),
ω = π/3
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Oscillation of the floors 3,4,5 (black, blue, red),
ω = π

5 V-shaped
The modelling system of ODE is the system (3),
where m1 = 200, m2 = 400, m3 = 600, m4 = 800,
m5 = 1000, ki = k, ci = c, E = 10.
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Oscillation of the floors 1,4,5 (black, blue, red),
ω = π/3
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Oscillation of the floors 1,4,5 (black, blue, red),
ω = π

6 Pyramidal form
The modelling system of ODE is the system (3),
where m1 = 1000, m2 = 800, m3 = 600, m4 =
400, m5 = 200, ki = k, ci = c, E = 10.
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Oscillation of the floors 1,3,5 (black, blue, red),
ω = π/3
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Oscillation of the floors 1,3,5 (black, blue, red),
ω = π

7 Conclusion
For the rectangular form building, the displace-
ment of the floors from the symmetry axis in-
creases in time for small (ω = π/3) frequency of
seismic waves. For larger value (ω = π) the dis-
placements seem to be bounded.

For the dumbbell shape buildings behavior at
ω = π/3 is similar to the previous case. For larger
value ω = π oscillations are bounded with the
largest amplitude for the third floor. Vibrations
of the higher floor are more intensive than ones
for the rectangular building.

For the V-shaped buidings the tendency for
resonance is obvious also as ω = π/3. Even the
first floor vibrates with relatively large amplitude.
For larger value ω = π oscillations are bounded
with largest displacements at approximately 40
units.

For the pyramidal form buildings there is no
tendency for resonance at ω = π/3. For larger
value ω = π the highest floor oscillates intensively
with the amplitudes over 40 units. This was not
observed for other type buildings.

At the end let us remark that if the elastic
model is accepted, also higher buildings can be
considered of various shapes and for different val-
ues of parameters. The obstacle may be the lack
of computer resources only.
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