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Abstract: In this review, we discuss new cases of integrable systems on the tangent bundles of finite-dimensional
spheres. Such systems appear in the dynamics of multidimensional rigid bodies in nonconservative fields. Thest
problems are described by systems with variable dissipation with zero mean. We found several new cases o
integrability of equations of motion in terms of transcendental functions (in the sense of the classification of
singularities) that can be expressed as finite combinations of elementary functions.
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We examine nonconservative systems that cannot dimensional flat part (disk) of the surface of the six-
be studied by ordinary methods of analysis of Hamil- dimensional body), and the force acts perpendicularly
tonian systems. For such systems, we must directly to this disk. We systemize these results and present
integrate the fundamental equation of dynamics (see them in the invariant form. We also introduce an ad-
also[1, 2]). We propose a new, more universal presen- ditional dependence of the moment of the nonconser-
tation of complete integrable systems (both new and vative force acting in the system on the angular veloc-

obtained earlier) in dimensions 5 and 6.

In the general case, itis quite difficult to construct
a theory of integration of nonconservative systems
(even in low-dimensional cases). However, in some

ity. This dependence can be also considered in higher-
dimensional cases.

cases where a system possesses certain additionall General Preliminaries

symmetries, one can express first integrals as finite

combinations of elementary functions (see [3, 4, 5]).

We present general aspects of the dynamics of 1.1 Dynamical symmetries of five- and six-

free, multi-dimensional rigid bodies: the notion of the
tensor of angular velocity, joint dynamical equations
of motion on the direct produ@®™ x so(n), the Eu-
ler and Rivals formulas in the multi-dimensional case,
etc.

We discuss the tensor of inertia of five- and six-
dimensional rigid bodies. In this activity, we consider
only the cases where four of the five principal mo-
ments of inertia of a five-dimensional body coincide,
i.e., I, = I3 = I, = I5 and five of the six principal
moments of inertia of a six-dimensional body coin-
cide,i.e.lo = I3 =14 = I5 = I;.

The results presented in activity refer to the case
where the interaction of a homogeneous flow of a
medium with a fixed body is concentrated on a four-
dimensional flat part (disk) of the surface of the
five-dimensional body (and, respectively, on a five-
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dimensional bodies

Assume that a five-dimensional (respectively, six-
dimensional) rigid body of massm with a smooth
four-dimensional (respectively, five-dimensional)
boundaryd® is under the influence of a nonconser-
vative force field. Note that this can be treated as
motion of the body in a resistive medium that fills
up a five-dimensional (respectively, six-dimensional)
domain of Eucludean spad®® (respectively, ES).
Assume that the body is dynamically symmetric;
in this case, there are several representations of its
tensor of inertia: in the five-dimensional case, in
some coordinate systemxxsx3xaxs attached to
the body, the operator of inertia has either the form

diag{11, I, I, I, I}, (1)
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or the form diad{/;, I1, I3, I3, I3}; respectively; in
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wherewy, wo, ..., wig are the components of the

the six-dimensional case, in some coordinate system tensor of angular velocity with respect to the coordi-

Dzxxox3242524 attached to the body, the operator of
inertia has either the form

diag{ll712712a12;12712}7 (2)
or the form diagl, I1, Is, I3, I3, I3}, or the form
diag{ 4, I, 11, Is, I3, I3}. In the cases (1) and (2), in
the hyperplaneDzorsrsxs and Dxoxszirsas, re-
spectively, the body is dynamically symmetric.

1.2 Dynamics on son) and R™

The configuration space of a freedimensional rigid
body is the direct product of the spaRé& (which de-

scribes the coordinates of the center of mass of the

body) and the rotation group $0) (which describes
the rotation of the body about its center of mass):

R" x SO(n) 3)
and has dimension + n(n — 1)/2 = n(n + 1)/2.

nates of the Lie algebra &9), or, respectively, in the
form

0 —wis w4 —wi2 w9 —ws
w15 0 —wiz3 w11 —ws wy
—w14 W13 0 —w1p Wwr —ws
Wiz —Ww11 Wi 0 —ws w2 ’
—Wo ws —Ww7 we 0 —Ww1
ws —wy w3 —Ww2 w1 0

(6)
wherewy, ws, ..., wis are the components of the
tensor of angular velocity with respect to the coordi-
nates of the Lie algebra ).

Obviously, the following equalities hold for all
i,7=1,...,5 (respectively;,j = 1,...,6)

XNi—Aj =1 — . @)

For the calculation of the moment of the exterior

Therefore, the dimension of the phase space is equal force acting on the body, we must construct the map-

ton(n+1).

In particular, if€2 is the tensor of angular velocity
of a five-dimensional (respectively, six-dimensional)
rigid body (it is a second-rank tensor; see [2, 3, 4]),
Q) € so(5) (respectively? € so(6)), then the part of
dynamical equations of motion corresponding to the
Lie algebra s¢) (respectively, s()) has the follow-
ing form:

QA + AQ+[Q, QA + AQ] = M, (4)

where A = diag{\1, \2, A3, \1, A5} (respectively,
A - dlag{A17 )\27 A37 )\47 )\57 >\6})7 )\1 = (_Il + I2 +
I3+ Iy + I5)/2, Ao = (Iy — Lo + I3 + Iy + I5) /2,
N=U+DL—-Is+Ii+1I5)/2,\s = (I + I +
Is—Iy+15)/2, s = (L + Ir + I3+ 1, — I5) /2, or,
respectively)\l = (—Il + L+ I3+ 1, + 15+ 16)/27
Xo=L—L+L+1i+Is+16)/2, A3 = (L1 + o —
I3+ 14+15+16) /2, \y = (1 + 1o+ 13— 14+15+16) /2,
s = (L + L+ I3+ 1y —Is + I)/2, \¢ =
(i + I+ I3+ 1y + Is — Ig)/2, whereM = Mp
is the projection of the moment of exterior forceés
that act on the body iR® (respectively, ifR°) to the
natural coordinates in the Lie algebraSp(respec-
tively, in sa6)), and[ | is the commutator in $6)
(respectively, in s@)). The skew-symmetric matrix
corresponding to the second-rank tenSore so(5)
(respectively,Q2 € so(6)) can be represented in the
form

0 —wio wyg —wr wy
w10 0 —Wws We —Ww3
—wg Wy 0 —ws w2 |, (5
wr —Wg  Ws 0 —w1
—W4 w3 —Ww9 w1 0
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ping
R" x R" — so(n), (8)
that to each pair of vectors
(DN,F) e R" x R" 9)
fromR"” x R"
DN = {0,zon,...,zyN}, F={F1,..., F,}, (10)

where F is the exterior force acting on the body,
puts in correspondence an element of the Lie algebra
so(n), n = 5, 6, determined by the auxiliary matrix

0 TnN
g F, ’

Then the right-hand side of the system (4) takes
the form

To2N

“ ay

M = {xynF5 — xsnFu, x5nF3 — 238 F5,

2oNFs — 25N Fo, 25N F1,
23NFy — xanF3, xan Fo — xon Fy, —xan FY,
xoNF3 — xsnFo, w3 Fr, —xon F1},  (12)

for n = 5 and the form
M = {zsnFs — 6N Fs, x6NFy — 24N F,

x3nFe — xenF3, 6N Fo — won Fo,
—x6NF1, Tan F5 — wsn Fu, 258 F3 — 23N F,

onFs — 25N Fo, 5N F1, 23N Fy — zan F3,
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TaNFo — xonFy, —x4nF1,
xoNF3 — w3nFo, w3 Fr, —xon 1}, (13)

forn = 6.
Generally speaking, the dynamical systems con-
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Dzxixox3rsxrsag) be the coordinate system attached
to the body such that the symmetry axi&) co-
incides with the axisDz; (here C is the center
of mass) and the axe®ux,, Dxs, Dxy, Dxs (and
Dxy, Dxg, Dxy, Dxs, Dxg in the six-dimensional

sidered below are nonconservative and belongs to the case) lie in the hyperplane of the disk, and

class of systems with variable dissipation with zero
mean (see [7, 8, 9]). We must to examine a part of
the fundamental equation of dynamics, namely, the

L, I, I3 = I, Iy = I, Is = I, andm
(@ndhy, Iz, Is = Iz, Iy = Iz, Is = Iy, Is = I,
andm in the six-dimensional case) are the principal

Newton equation. In the case considered, this equa- moments of inertia and the mass of the body.

tion describes the motion of the center of mass, i.e.,
corresponds to the spaB&¥, n = 5, 6:
mwg = F, (14)
wherew( is the acceleration of the center of ma&ss
of the body andn is its mass. Using the multidimen-
sional Rivals formula (note that it can be obtained by

using the operator method) we arrive at the following
equalities:

Weo = WD+Q2DC+EDC, Wp =Vp+Qvp, F = Q,

(15)
wherewp is the acceleration of the poii?, F is the
exterior force acting on the body (in our cake=
S), andFE is the tensor of angular acceleration (it is a
second-rank tensor).

Thus, the system of equations (4), (14) (its order
is 15 forn = 5 and 21 forn = 6) on the manifold
R"™ x so(n) determines a closed system of dynami-
cal equations of motion of a free five-dimensional (re-
spectively, six-dimensional) rigid body under the ac-
tion of an exterior force F. This system can be seg-
regated from the kinematic part of the equations of
motion on the manifold (3) and can be examined sep-
arately.

2 General Problem on the Motion
with a Tracking Force

Consider the motion of a homogeneous, dynamically
symmetric (cases (1) and (2)) rigid body with four-
dimensional (respectively, five-dimensional) plane
front end (disk) interacting with a medium that fills up
the five-dimensional (respectively, six-dimensional)
space in the field of a resistance forSeunder the
guasi-stationary conditions (see [9, 10, 11]).

Let (v, a, B1, B2, B3) (respectively,
(v, «, b1, B2, 33, 04)) be the (generalized) spher-
ical coordinates of the velocity vector of a certain
characteristic pointD of the rigid body (letD be
the center of the disk lying on the symmetry axis
of the body), 2 be the tensor of angular veloc-
ity of the body, andDzixzox3z425 (respectively,
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We introduce the following notation for the
components with respect to coordinate system
Dxixox3rsxs E5: DC = {—0’,0,0,0,0},

Vp = {vcosa,vsin acos (1, v sin asin (1 cos G,

v sin asin 3 sin B2 cos B3, v sin acsin By sin B2 sin G }
(16)
(similar relations can be written fdz).

In the case (1) (and (2= {-5,0,0,0,0}, i.e.,
in the case considered we hdve= S.

Then the part of the dynamical equations of mo-
tion of the body corresponding to the motion of the
center of mass (in the spa®’) under the assump-
tion that tangent forces vanish can be written in the
form

U cosa — Qu sin o — w1gv sin a cos B+

4wgv sin a sin 31 cos Bo—
—wryv sin acsin By sin Bo cos B3+
4w4v sin o sin 3y sin By sin B3+

+o(wiy + Wi +wi +wf) = —S/m,

17)
v sin « cos 31 + v cos aecos 31 — B sin asin B+
+w10v €OS ¢ — wg sin arsin 31 cos Go+
+wg sin o sin By sin B cos B3 —

—w3v sin a sin (31 sin (s sin B3 —

(18)

U sin acsin By cos B + & cos asin 31 cos Bo+

—0(wows + wewy + wawy) — owig = 0,

+B1v sin v cos B cos Bo—

—Bov sin asin 31 sin fa—wov cos a4-wsv sin a cos B —
—wsw sin acsin By sin Bo cos 3+
+wov sin av sin By sin FBs sin B3 —

—0(wgw1p — wswy — wowy) + owg =0,  (19)
¥ sin «esin (31 sin fB cos B3+

+aw cos asin 4 sin B cos B3+

+B1vsin ac cos By sin 3o cos B3+
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+ v sin asin B cos B cos B5—
—Bsv sin asin B sin B sin B3 + wrv cos a—
—wgv sin « cos B+
4wsv sin asin B cos Pa—
—w1 v sin a:sin By sin By sin B3+
+o(wswio + wswy — wiwyg) — owr = 0, (20)
¥ sin asin By sin B sin B3+
4w cos asin (1 sin (o sin B3+
+ v sin acos By sin Bg sin B3+
+Byv sin asin By cos Bo sin B3+
+fB5v sin asin By sin B cos B5—
—w4v cos & + w3v sin a. cos B —
—w9 sin asin (1 cos [Po+
4w v sin asin B sin By cos (B3 —
—0(w3w10 + wawg + wiwr) + 0wy = 0, (21)

whereS = s(a)v?, 0 = CD, v > 0.

Similar equations can be also obtained for the six-
dimensional case.

Further, the auxiliary matrix (11) for the calcu-
lation of the moment of the resistance force has the

form
) . (22)

Then the part of dynamical equations of motion cor-
responding to the rotation of the body about its center
of mass (in the Lie algebra §9)) can be written in the
form

0 ®on 3N TaN TsN
-5 0 0 0 0

()\4 + )\5)@1 + ()\4 — )\5)(W4W7 + w3wg + w2w5) =0,

(23)
(A3 4+ As5)2 + (A5 — A3) (wiws — wawg — wawg) = 0,
(24)
(A2 + A5)ws 4+ (A2 — As) (wawig — wawg —wiwg) = 0,
(25)

(A1 4+ As5)ws + (A5 — A1) (wswio + wawg + wiwr) =
Q
= —I5N (CY, ﬁla /827 637 'U) 3(04)1)2, (26)

(A3 4+ A1)ws + (A3 — Mg (wrwy + wews +wiwe) = 0,
(27)
(M2 +A1)wg + (Mg — Xo) (wsws — wrwio —wiws) = 0,
(28)
(M + M)wr + (M — M) (wrws — wew1g — wswy) =

= T4N (Oé, /61) 525 537 S;) S(a)1)2, (29)
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(A2 4+ A3)ws + (A2 — A3) (wow1p + wswe +wows) = 0,
(30)
(A1 4+ A3)wg + (A3 — A1) (wswip — wswr — wawy) =

Q
= —I3N (O[, ﬂla ﬂ?v /637 U) 8(04)7)2, (31)
(A1 + X2)wip + (A1 — A2)(wswy + wewr + wawy) =

= T2N (Oé, /817 627 /837 g;) S(O[)UQ' (32)

Similar equationcan be written foi®.

Thus, the phase space of the system (17)—(21),
(23)—(32) of order 15 is the direct product of the five-
dimensional manifold and the Lie algebrgsp

R! x 8% x sq(5). (33)

Note that the system (17)—(21), (23)—(32), due to
the dynamical symmetry

I =13 =14 =I5, (34)
possesses the following cyclic first integrals:
w1 = w(l), Wy = wg, w3 = wg,
ws = WY, we = wd, wg = wy. (35)

In the sequel, we consider the dynamics of the
system on zero levels:

W=wd=w)=wl =wi=w)=0. (36)

In the case of a six-dimensional body, we note
that, due to the dynamical symmetry

L=1I3=1=15 = I, (37)

the system possesses the following cyclic first inte-
grals:

0

— .0 — — .0 — 0 — 0
w1:wl,w2:0j27 w3IUJ3, (/.)4:&)4, (,L)()':CU()',

(38)

—, 0 —, 0 — 0
wr = w'?, wg = w87 w1l = (,(}10,
— 0 — 0
w11 = wll, w13 = (./.}13

In this case, we also consider the dynamics of the
system on zero levels:

W) =wd =uw)=w) =uwd =

_0_ . 0_,0 _,0 _ 0
= Wy = Wg = Wyp = Wy = W3-

(39)

If we consider a more general problem on the mo-
tion of a body under a tracking forCe acting along
the straight lineC' D = Dz, and providing the equal-
ity

v = const, (40)
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then the system (17)—(21), (23)-(32) for a five-
dimensional body (and the corresponding system for
a six-dimensional body) contains the valté —
s(a)v?, o = DC, instead off}.

Choosing the valu& of the tracking force appro-
priately, we can achieve (40). Indeed, formally ex-
pressingT’ from the system (17)—(21), (23)—(32) in
the case whereos o £ 0 we obtain

T = Ty(a, B1, B2, B3, ) = mo(wi+wi+wi+wiy)+

mo sin o

2
1 -
ts(a)v { 31 cos«

Ly <Oé,51752,53, 2)} ;
(41)

Q
Fv (Oé, 617 /827 637 ’U> =
= T5N (04751752,53, v) sin 31 sin B2 sin B3+
QN . )
+xan (047 B1, B2, 33, U) sin 31 sin B2 cos B3+
QN .
+.’E3N (Oé, 51) ﬂQu /837 U) sm /81 COs 52—’_

+xaN <Oé, B, B2, 3, S) cos 3. (42)

To deduce Eq. (41), we have used the conditions
(35)—(40).
For a six-dimensional body, Eq. (41) has the form

T = Tv(a,ﬁl, 527ﬂ3,ﬁ45 Q) =

= ma(wg + wg + Wiy +wi + W%5)+

ma SinaFv (04,517527ﬁ3’ﬁ4’ i}lﬂ .

4]5 cos o
(43)
This procedurecan be interpreted as follows.
First, we have transformed the system by using the
tracking force (control) that guarantees that the mo-

+s(a)v? |1 —

tion belongs to the class (40). Second, this procedure

allows one to reduce the order of the system. Indeed,
the system (17)—(21), (23)—(32) generates the follow-
ing independent system of eighth order:

avcosacos B — Blv sin o sin 31+

+wigv cosa — owig = 0, (44)
& cos asin B cos By + Blv sin « cos (31 cos o —
—Bgv sin asin (37 sin o —
—wgv cos & + gy = 0, (45)
& cos asin (1 sin Bo cos B3+
+B1v sin accos By sin 3o cos B3+

ISSN: 2367-895X 32

International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

+ By sin asin B cos B cos B5—

—6311 sin «sin (7 sin By sin B3+

+wrv cos @ — owy = 0, (46)
A& cos acsin (1 sin B9 sin B3+
+ 10 sin acos By sin Bo sin B3+
+Byv sin asin By cos Bo sin B3+
+53v sin acsin (1 sin B3 cos B3 —
—wy4v cos a4 owy = 0, 47
) Q
3oty = —x5N <Oé, B, B2, B3, U> s(a)v®,  (48)
. Q 2
3]2(4)7 = T4N | &, 61a ﬁ2a ﬁ37 ; S(OZ)U ’ (49)
. Q 2
3[2(4.)9 = —I3N | &, ﬁla /627 537 E S(Oé)’U ) (50)
. Q 2
3[2(,()1() = 2N | &, ﬁlv /827 637 E s(a)v ) (51)

which, in addition to the constant parameters listed
above, also contains the parameter
The system (44)—(51) is equivalent to the follow-
ing system:
Qv cos a+

+v cos a{wig cos B1 + [(w7 cos P3—
—wy sin B33) sin B2 — wg cos (o] sin By }+
+o{—wig cos B1 + [Wg cos fo—
— (W7 cos B3 — Wy sin f3)sin fosin B} = 0, (52)
Blv sin a4+
+v cos af[(wr cos B3 — wy sin f3) sin Ba—
—wg cos fIo] cos 1 — wip sin By }+
+0{[Wg cos B2 — (W7 cos B3—
—wy sin 33) sin (2] cos 1 + wigsin B} = 0,

Byvsin asin B+

(53)

+v cos af [wr cos B3 —
—wy sin (3] cos Bz + wy sin B2+
+0{—[w7 cos B3 — Wy sin f3] cos Bo—
—wg sin Bo} = 0, (54)
Bgv sin v sin (31 sin G+
+v cos a{ —wy cos B3 — wr sin B3 }+
+o {Wy cos B3 + Wrsin Pz} = 0,

2

—£$5N

(55)

Wy = (56)

(aalglaﬁZaﬁ?n&Z) s(a),
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2 Q

in = gowa (0,010 ) sla), (67
2 Q

d)9 - _?:}7[21‘3]\7 (Oé, /817 527 537 U) S(a)7 (58)
2 Q

om0 = 5o (81, o o) ) (@) (59)

Similar systemscan be also obtained for a six-
dimensional body.

We introduce the new quasi-velocities in the sys-
tem. For this, we transform the values, w7, wg, and
w1o by the compositions of three rotations as follows:

21
22
<3
24

= T374(*ﬂ1) o T2,3(*62)o

Wy
w
oTia(=B3) | T, (60)
w9
w10
10 0 0
01 0 0
Ts4(8) = 0 0 cosf3 —sing |’
0 0 sing cosp
1 0 0 0
| 0 cos —sinf 0
Tos(8) = 0 sin3 cosf8 0 |’
0 O 0 1
cos —sing 0 0
| sinB cosp 0 0O
T1,2(,8) - 0 0 1 0
0 0 0 1
Thus, the following relations are valid:
Z1 = wy cos fB3 + wy sin F3,
29 = (w7 cos B3 — wy sin f3) cos o+
4wy sin Fa,
23 = [(—wy cos B3 + wy sin [3) sin P2+ (61)

+wy cos fa] cos B1 + wip sin fi,
24 = |(wr cos f — wa sin ) sin
—wg cos o] sin B + w1 cos Fi.

For the case of a six-dimensional body, the new

guasi-velocities in the system are introduced as fol-
lows. We transform the valuess, wg, w12, w14, and
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w15 by the compositions of four rotations as follows:

21
zZ2
23 | =Tys5(—p1) o T34(—pP2)o  (62)
z4
25
Wy
wy
oTp3(—F33) o T12(—f4) | wi2
wi4
w15

We see from (52)—(59) that on the manifold

Ol = {(a)ﬂlaﬁ27ﬁ3>w47w7vw97w10) S RS :

o =3k Oy =l fo =y kL ¢ Z) (63

the system cannot be uniquely solved with respect
&, B1, o, andgs. Therefore, on the manifold (63) the
uniqueness theorem is formally violated. Moreover,
for evenk and anyl;, andls, the unambiguity appears
due to the degeneration of the spherical coordinates
(v, o, B1, B2, B3), whereas for odd: the uniqueness
theorem is explicitly violated due to the degeneration
of the first equation in (52).

This implies that the system (52)—(59) outside the
manifold (63) is equivalent to the following system:

PRI C)

Ly <a,517527ﬁ3, i}) , (64)

315 cos a
2

24237[28

(@ (081,52 s, f) -

COS v
— (21 + 25 + 23)

sin o

{—2z30y1 <a,ﬁl,52?ﬁ3’ SZ) +

ov s(«)

Tbsina

Q
I

_ZlAv,3 <Oé,ﬂ1,,827/63, ?)}’ (65)

8} COS (x COS D1
—— + (2 + 23) 5
S1n &

2"3 = Z3%4 . .
sin « sin (1

ov s(«)

{24y 1 (a, B1, B2, B3, ?) _

Esina

Q
_ZQAU,2 (Oé, ﬁla ﬁ27 /637 ’U)

cos 1
sin 51
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)\ cos Q
+21A,3 (%51,52753, ) - ﬂl}— +x3N (04,51,52,53, ) cos [31 cos Ba+
v /) sin (1 v
v? 0 Q .
_378( ) v,1 (Oé, 517 ﬁ?v ﬁ37 U) ’ (66) +x4N &, /817 ﬁQ? ﬂ37 Z cos ﬁl St ﬂ2 cos /83+
Q . .
2.2 = 2924 C‘OSOC — 2923 C,Osa C_OS IBl — +I5N (Oé, /817 525 /ﬁ?)? U) Ccos ﬁl S111 52 sm /837
nao sin v sin Gy
2Cos 1 COSﬂQ A’U2 (avﬁbﬁ?aﬁ?wQ) =
-2 + , v

sin «v sin (31 sin (o

Q\ .
o s(a) , — oy (B fa o, Jsin it (72)
s v2 7ﬁlaﬁ27/837 v
31 sin o 0
R B | va (0,01, o, ) cos oot
X 24 + 23 + v
in 3 a
ov S(Oé) +Ts5N <aa/817ﬁ27ﬁ37 > COSﬁQ Sin/@37
PE—— U3 751a62763’ X v
315 sin 0
1 COSﬂQ AU,3 (athﬁQaﬁg}:) -
X {—21 . - }-i— v
sin 31 sin (o

2

+75( )Ay ( , B, B2, B3, ) . (67) Co <a,51,ﬁ2753,2> sin 3+

315 Q
+x5N8 <Oé, ﬁla ﬁ?a ﬁ?n ’U> COs 5?”

. Cos & cos « cos (31
21 = 2124 — 2123 . _
sin o sina sin £ andthefunctionT’, («, 51, 52, 33, €2/v) can be repre-
cosa 1 cosf sented in the form (42).
+2z129 Sin o 5in 3, sin s Here and in the _sequel, the dependence
on the groups of variableS«, 31, (2, 03,2/v)
ov s(a) ) ( 81, Ba, B Q) % is considered as the composite dependence on
315 sina ’ e (Oé,ﬂl,62,ﬁ3,21/U,ZQ/U,Z3/U,Z4/'U> due to (61)
cos B 1 cosfs A similar system can be obtained for a six-
Z4 — 23 + 22— - - dimensional rigid body.
sin 31 sin 31 sin By

The violation of the uniqueness theorem for the
system (52)—(59) on the manifold (63) for oéiccan

_3728( *)Av3 (O"Bl’ﬁ%ﬂ?” U) . (68) be interpreted as follows: for oddand for almost all

COS & points of the manifold (63), there exists a nonsingular

2

B = 23— phase trajectory of the system (52)—(59) that intersects
SN &« . .
the manifold (63) orthogonally and also there exists a
+2v 8.(0‘) A <a7ﬂ1752,537 Q) ’ (69) phase trajectory that completely coincides with this
3l sina points at all moments of time. However, these trajec-
Gy = cos tories are distinct since they correspond to different
2= TR ein B, values of the tracking force.
ov  s(a) ( )
T «, ) 9 ) ) 70
30 smasinf b1, B, P ("9 3 case where the Moment of Non-
By = 2y 08¢ conservative Forces Is Indepen-
sin asin (1 sin By .
dent of the Angular Velocity Ten-
ov s(a@) ( 81 . 3 ) sor
31, sin asin 3 smﬂ & P12, 78
71
Q (71) 3.1 Reduced system
AU,I <a7ﬁ17ﬂ27637 ) = .. . . .
v Similarly to the choice of Chaplygin analytic func-
Q\ tions (see [12, 13]), we choose the dynamical func-
= —ZI2N (a,ﬁl,ﬁ%ﬂs,v) sin 1+ tions s, won, 73N, T4n, andzsy in the following
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form:
s(a) = Bcosa,

TN (Oéﬂl,ﬂ%ﬂ?n S) =
= wano(a, 1, 2, B3) = Asina cos f,
T3N (04,51,52,53, ?) =
= z3no0(a, B1, B2, F3) = Asinasin 1 cos f2, (73)
T4N (04751,52,53, SZ) =
= z4no(a, B1, B2, B3) = Asin asin 31 sin 3 cos 33,
T5N (04751,527@% S) =

= x5no0(a, b1, B2, B3) = Asinasin £ sin B sin 33,

whereA, B > 0 andv # 0. This representation shows

that in the system considered, the moment of noncon-
servative forces is independent of the angular velocity

(it depends only on the angles 31, G2, and3s).
In this case, the func-

tions FU (a,ﬁl,,@Q,ﬁi;,Q/’U) ) and
Ay s (o, 1, B2, 03,2/v), s = 1,2,3, in the sys-
tem (64)—(71), have the following form:

Q
F’L) (a7ﬁl7ﬁ27/837 U) = ASil’lO&,

Q
Av,s <a7ﬁ1352>ﬁ3a ’U> = Oa s = 172a3' (74)

In the six-dimensional case, the dynamical func-
tionsxapn, 3N, Tan, Ty, andzgy have the form

TaN (%51752,53,64, ?) _

= zano(a, B, B2, B3, Ba) = Asinacos By,
Q
T3N (Oé,ﬁl,ﬁ2,ﬁ3,/34,v> =
= x3no0(a, B1, B2, B3, f1) = Asinasin By cos [,
T4N (057/817527/8376475’3) =
= Z’4N0(a,51,,82,ﬁ3,ﬂ4) =

= Asin asin 1 sin (s cos (33,
Q

TsN (a7/817ﬂ27/837647v> =

= w5n0(e, 1, B2, 33, Ba) =

= Asin «sin (1 sin 5 sin (33, cos (4,

(75)
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Q
o (0 61,2, s, ) =
= xGNO(avﬁlvﬂ%ﬁ& 54) =

= Asin asin 1 sin (G5 sin B3 sin [4.

Then, due to the nonintegrable constraint (40),
outside the manifold (63) the dynamical part of the
equations of motion (the system (64)—(71)) takes the
form of the analytic system

, o ABv
o = —2z4+

(76)

sin a,

ABuv?

/ . 2, .2, 2008«
2y = sinacosa— (27 +25 +2z25)——, (77
4 3[2 ( 1 2 3) Slna? ( )
p COS (v 9 9, COSCOs [
25 = 2324 + (21 + 25) = : 78
37 “*dina (21 2)sma sin 31’ (78)
, CoS (v cos «v cos (31
Zo = 2924 — 2223 p -
sin a sin v sin (1
gcosa 1 cosfa
R . . ) (79)
sin « sin 31 sin (o
, cos o cos a cos 31
21 = 2124 — 2123 - =
sin « sin (31
cosa 1 cosfh
2122 : : ) (80)
sin «¢ sin 31 sin B9
cos
ﬁi = 23— ) (81)
sin «
coS (v
By = —2zg—v, (82)
sin o sin 1
coS (v
B3 = 21 (83)

sin arsin 31 sin 3o

Weintroduce the dimensionless variables, param-
eters, and differentiation as follows:

AB
zk — novzk, k=1,2,3,4, n(Q) = —, (84)
31
b=ong, < ->=ngv<">.
We reduce the system (76)—(83) to the form
o = —z4 + bsina, (85)
I 2, .2, 2008
= — 86
zy =sinacosa — (27 +22+23)Sina, (86)
p cos o 9 9,COSacos B
= 87
BT B na + ZQ)sina sin 31’ &7)
, cos cos « cos 31
29 = 2224 — 2223 - -
sin sin «¢ sin 3q
scosa 1 cosfa (88)

—Z1 - -
Lsin v sin B sin B
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, cos cos a cos 31
2] = 2124— — 2123
sin

sin « sin (q

cosa 1 cosfh

+2129— : :
sin o sin B sin By’
, cos «
ﬁl = 23— 9
sin o«
8 cos v
2 sinasin 81’
, cos «
53 =z

sin arsin 31 sin 3o

We see that the eighth-order system (85)—(92),

International Journal of Mathematical and Computational Methods

(89)
(90)
(91)

(92)

which can be considered on the tangent buridse

which can be considered on the tangent bursfle
contains an independent seventh-order system (85)—

(91) on its own seven-dimensional manifold.

In the case of a six-dimensional body, the corre-
sponding system of dynamical equations takes the fol-

lowing form:
o = —z5+ bsina,

/ : 2 2 2 2y COS &
Zr =SINcCos — (27 +25 +23 +24)—
5 (21 2 3+ 25) Sin o
Cos & cos « cos 3
/ 2 2 2 1

Zy = 2425 —f—(zl + 25 —i—Zg) - :
sin « sin «v sin (1

, cos « cos a: cos (31
3 = Z3%5 — 2374 : -

sin o sin « sin (3

cosaa 1 cos
(24 2) i

sin o sin 31 sin 3y’

, Cos cos v cos (31
Zo9 = R2725— — 29z
sin«

4 .
sin v sin Gy

cosa 1 cos(s

+2223— - :
**3sina sin (1 sin B9

scosa 1 1 cospfs

21— . : .
sin «v sin 31 sin B2 sin B3’
, CoS (v cos « cos (31
21 = 21”5 — Z1%24— -
sin « sin « sin (q

cosa 1 cosfh

+z123— : :
13 6ina sin (1 sin (o
cosa 1 1 cospfs
—2129— - - -
12 in o sin By sin B sin B3
cos «
ﬁi = 24— 5
sin
, Cos v
= —R3 5
P2 sinasin By
cos «
By = 2o

sin asin 3y sin 3o’

ISSN: 2367-895X

(93)

, (94)

, (95)

(96)

(97)

(98)
(99)
(100)

(101)
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y Cos
= —21— - - - . 102
P !sin avsin (1 sin B2 sin B3 (102)

For the complete integration of the system (85)—
(92), we need, in the general case, seven independent
first integrals. However, after the substitution

wy = 24, w3 =/ 2] + 23 + 23,

z9 z3
Wy = —, W] = —————ry, (103)
1 NETE
the system(85)—(92) splits as follows:
o = —wy + bsina, (104)
w) = sina cos a — w3 C?S a , (105)
sin «v
wh = w3awy c?sa’ (106)
sin a
wé = d2(w47 ws, w227 wy; &, 617 ﬁ?a 63) X
xTuacosle (107)
By = da(wy, w3, w2, wy; o, B, B2, B3),
wy = dy(wy, w3, wo, w1; @, Br, B2, B3) X
x 1+w? cos By (108)

wy sinfp?
B = di(wa, w3, wa, wi; o, B, B2, B3),

B5 = d3(wy, w3, wo,wi; @, 1, B2, B3),  (109)

di(wg, w3, wa, wr; e, B, B2, f3) =
— Z3(w4aw37w23wl)g?sga
do(wy, w3, wo, wi; @, B, P2, B3) =

110
e 7Z2(w4,w33w2,w1)ﬁ’ ( )

d3(wa, w3, w2, wi; o, P1, B2, B3) =

_ cos o
- Zl(w4’ ws, W2, wl)sinasinﬁl sin B2

Moreover,
2 = Zp(wg, w3, wa, w1 ), k=1,2,3, (111)

due to the substitution (103).

We see that the eighth-order system splits into
independent subsystems of lower orders: the system
(104)—(106) of third order and the systems (107) and
(108) of second order (of course, after a change of the
independent variable). Thus, for the complete integra-
bility of the system (104)—(109) we need two indepen-
dent first integrals of the system (104)—(106), one first
integral of each of the systems (107) and (108), and
an additional first integral that “attaches” Eq. (109).

Note that the system (104)—(106) can be consid-
ered on the tangent bundis? of the twodimensional
spheres?.
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In the case of a six-dimensional rigid body, the
corresponding change of variables has the form

W5 = 25,

wi=\[A B+ ws=2,  (112)

w2 = = , W1 = = .

\/zf—l—z% \/zf—l—z%—&—zg

Thesystem(93)—(102) splits as follows:

o = —ws + bsina, (113)
wh = sina.cos o — w? C?S a ) (114)

sin «
w) = waws Cf)s a, (115)

sin «
wy =

= d3(ws, wa, w3, wa, w1; &, B, B2, B3, Ba) X
1+w? cos fBs

w3 sin (3
B4 = d3(ws, wa, w3, wa, wi; o, 1, B2, 33, Ba),
(116)
wh =

— d2(UJ5,’lU4, w3, W2, Wi, a’ﬁ17/627ﬁ37/84)x

2
x 1+w3 cos B2

wg  sinfa?
05 = da(ws, wa, w3, w2, w1, B, B2, B3, Ba),
(117)
w) =

= di(ws, wy, w3, w2, w1; a, B, B2, 33, B4) X
1+wf cos 1

w1 sinB1”
ﬁi == dl(’w5,U}4,w3,w27w1;0[,ﬂ1,,62753,54),
(118)
54/1 == d4(w5,U}4,w3,w2,w1;0[,ﬂ1,,62,63,54),
(119)

di(ws, wa, w3, wa, wi; &, B1, B2, B3, Ba) =
= Zay(ws, wy, w3, wa, w1) Foor,
do(ws, wa, w3, w2, wi; &, B1, B2, B3, Ba) =

_ COS &
= —Z3(ws, w4, W3, W2, W1) 55 ein B>

d3(ws, wy, w3, wa, wy; @, B, B, B3, f4) =

_ COS &
= Zg(w57w4,w37w2,w1)m,

da(ws, wa, w3, wa, wi; o, B1, B2, B3, fa) =

_ cosa
- _Zl (w5’ Wq, W3, W2, wl)sinasinﬁl sin B2 sin 83’

20)

and
2k = Zk(U]5,w4,'lU3,w2,’LU1), k= 1a273343 (121)

due to the substitution (112).

3.2 Complete list of invariant relations

In this section, we present results for a five-
dimensional rigid body; for six-dimensional bodies,
results are similar.
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The system (104)—(106) is similar to the system
of equations of dynamics of a three-dimensional rigid
body in a nonconservative force field.

First, to the third-order system (104)—(106), we
put in correspondence the following nonautonomous
second-order system:

2

dwy __ sinacosa—ws cosa/sina

da —w4+bsin o ’ (122)
dws __ w3wacosa/sina
da —w4+bsin o

Using the substitutionr = sin «, we rewrite the
system (122) in the algebraic form

dwy _ wa.g/‘r
dr = —wa+br?
dws w3wy /T (123)
dr = —wga+br

Further introducing the homogeneous variables

by the fornulas
w3 = U7, W4 = ULT, (124)

we reduce the system (123) to the following form:

dug _ 1 duy — _ujup
TH T2 = g Tgr TUL= 0% (125)
whichis equivalent to the following:
dug __ 1_U%+U%_bu2 dui _ 2ujus—bu;
dr = 7 —wtd T dr T T —ustb - (126)

To the second-order system (126), we put in cor-
respondence the nonautonomous first-order equation

dUQ N 1—u%—|—u%—bu2

: (127)

dTu 2uiug — buq

which canbe easily reduced to the complete differen-
tial form:

p u3 +ud — bug + 1
U1

> =0.  (128)

Thus, Eq. (127) has the following first integral:

u3 +ud — bug + 1

= ('] = const, (129)
uy
whichin the old variables has the form
w? +w? — bw4. sina + sin? o _ ¢, = const
w3 S1N ¢
(130)

Remark 1 Consider the system (104)—(106) with
variable dissipation with zero mean (see [14, 15, 16]),
which becomes conservative to 0:

2cosa
3sina’

o = —wy, wy =sinacosa — w
! COoSs &
W3 = W3Wa g

(131)
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It possessethe following two analytic first integrals: then the right-hand side of Eq. (139) becomes
w3 + wi + sin® a = CF = const (132) 1 d(b? — 4r?) B
ws sina = C5 = const (133) ! (07 —4r}) £ C1 v b —dr
Obvio_usly, the .rati_o of two first integrals (132) and —b/ r1 _
o e e ytem (45 o o

. . 2
w3 + wi — bwy sin o + sin” o (134) :_%m \/bC L1la bI17 (141)
1
and (133) are not first integrals of the system (104)—
(106), but their ratio is a first integral of the system 7 / drs 2 a2
104)—(106) for any. 1= » 3= 01 = AT
(104)—(106) for any VB —r3(rs £ C1)
. . . 142)
Further, we find an explicit form of the additional . . (
first integral of the third-order system (104)-(106). . Ir? thecalculation of th(te)llntegral (142), the follow-
We transform the invariant relation (129) for # 0 Ing three cases are possible.
as follows: 5> 2.
1
b\? Ci1\? Vv +C? [ = ———x
=)+ (-9 - 5% 1 oo s
We see that the parameters of this invariant rela- Vb2 — 4+ /07 — 13 o
tions must satisfy the condition X In 5 £ O} + 2 —4 T
b+ C?—4>0, (136) L1
—X
B2 —
and the phase space of the system (104)—(106) splits 2vVb5 —4
into the family of surfaces determined by Eq. (135). Iy TR
Thus, due to the relation (129), the first equation x 1 3 + (143)
of the system (126) has the form r3 £ C1 vb —4
dus 2(1 — bug + u%) — ClUl(Cl,UQ) +const.
T—— = , (137)
dr —ug +b Il b<2
1 1 . +Cyr3 + b3
i 4 2 _A(u2 —b 1)}: I = — 2l t (144
Ui(C1,u2) 2{01 \/Cl (u5 — bug + (:)33,8) N arcsin bi(rs £ C1) +const (144)
here the integration constaft is defined by the con- . »=2.
dition (136).
Therefore, the quadrature that determines the ad- b2 — 2
ditional first integral of the system (104)—(106) has the I = ﬂpi + const (145)
fOI’m C (7‘3 + Cl)
d (b—up)d Returningto the variable
/ T ug)dug . (139)
2 1—bug + UQ) Cl{W}/Q wy b
r = — -5 (146)
sina 2

W =C1£1/C? —4(u3 — bug + 1).
! \/ ! (v 2 ) we obtainthe final formulas for;:

Obviously, the left-hand side (up to an additive l.b> 2.

constant) is equal th | sin «. If
1 V2 —4+2 C
b 2 52 2 L= 2 In 2+ 2 — |+
up — 5 =1, b = b+ CF — 4, (140) 202 — 4 Wﬁ—‘”%i(}l b2 —4
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n 1 In Vb2 —47F2m - &) n
V0 —4 | 220y VDR -4
(247)
+const
Il b<2.
1 +C1\/bF — 4?2 + 13
I = 5 arcsin + const.
va—b by (y/b3 — 4r2 + C)
(148)
. b=2.
2rq
I = + const (149)

F
Cl(\/b% - 47’% + Cl)

Thus, we have found the additional first integral
for the third-order system (104)—(106) and hence we
have a complete list of first integrals, which are tran-
scendental functions of their phase variables.

Remark 2 In the expression of the first integral we
must formally substitute the left-hand side of the first
integral (129) instead of’; .

Then the additional first integral takes the follow-
ing structure (which is similar to the transcendental
first integral in the flat dynamics):

Wy w3

In|sina| + G (sin a, ) = Cy = const

(150)

Thus, for the eighth-order system (104)—(109),
we have found two independent first integrals. As
was said above, for its complete integrability, we need
one first integral for the separated systems (107) and
(108) and an additional first integral that “attaches”
Eq. (109).

To find a first integral of separated systems
(107) and (108), we consider the following first-order
nonautonomous equations:

sin o sin «

dws 1+ wg cos (s
dps sin 3,

The last equalities lead to the required invariant
relations

V14 w?

sin (3

=1,2. (151)

Ws

= Cs42 =coOnst s =1,2. (152)
Further, to find the additional first integral that

“attaches” Eq. (109), we put in correspondence to

Egs. (109) and (107) the nonautonomous equation

d'lUQ N

B —(1 + w3) cos fa.

(153)
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Since, due to (152),

C’4cos[32:j:\/CZ—1—w§, (154)

we have
— =F7—(14+w C2 —1— w2 155
3 $C’4( 2)\/ 4 2 (155)

Then,integrating the last equality, we arrive at the
following quadrature:

Cydw
F(o+Co) = [ . . (156)
(14 w3)y/CF —1— w3
C5 = const
Integratingthis, we obtain the equality
Cyw
TG+ C5) = ————,  (157)

C?—1—w?

C5 = const

Finally, we obtain the additional first integrals
that “attaches” Eq. (109):

arct Caws Qiﬁg = C5, C5 = const (158)

g—
\/C2 — 1 — w3

Thus, in the case considered, the system of dy-
namical equations (17)—(21), (23)—(32) under the con-
dition (73) has 12 invariant relation: the analytic non-
integrable constraint (40), the cyclic first integrals (35)
and (36), the first integral (130), the first integral ex-
pressed by the relations (143)—(150), which is a tran-
scendental function of the phase variables (it is ex-
pressed as a finite combination of elementary func-
tions), and the transcendental first integrals (152) and
(158).

Theorem 3 The system (17)—(21), (23)—(32) under
the conditions (40), (73), (36) possesses 12 invari-
ant relations (a complete set). Five of these relations
are transcendental functions (from the point of view of
complex analysis). All these relations are expressed as
finite combinations of elementary functions.

A similar theorem is also valid for the six-
dimensional case.
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4 Conclusion

Activity contains a review of results on the integrabil-
ity of equations of motions in the dynamics of five-
and six-dimensional rigid bodies in nonconservative
force fields. Such problems are governed by dynami-
cal systems with variable dissipation with zero mean.
Moreover, such systems often possess a complete list
of first integrals expressed through elementary func-
tions.

We also presented a method of reduction of sys-
tems with right-hand sides containing polynomial of
trigonometric functions to systems with polynomial
right-hand sides, which allows one to find first inte-
grals (or prove their absence) for systems of a more
general form, not only those having specified symme-
tries (see also [9, 10, 12]).
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