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Abstract: The main propose of this research is the investigation and theoretical background of the direct-

approximate methods for the numerical solution of singular integral equations with translation and conjugation

of the unknown function defined on the smooth contours of the Lyapunov type. The equations are defined on

the system of Fejér points. The numerical schemes of collocation and mechanical quadrature methods for the

equations with conjugations of the unknown function and for the equations with translation are elaborated. This

problem has been well studied for the case of functions defined on standard contours (a straight line segment, the

unit circle, and so on). In the case of an arbitrary closed smooth contour in the complex plane, the problem is not

studied enough. We suggest the numerical schemes of the Lagrange interpolation polynomials for the approximate

solution of weakly SIE defined on smooth closed contours in the complex plane. Our approach is based on the

Zolotarevski theory. The theorems of convergence for research methods are proved in Generalized Hölder spaces.

Key–Words: Singular Integral Equations, Fejér points, Generalized Hölder spaces, Collocation Methods, Mechan-

ical Quadrature Methods

1 Introduction

This article is dedicated to the problem of numerical

solution for Singular Integral Equations (SIE) and the

theoretical background of elaborated methods in Gen-

eralized Holder spaces. The problem for finding the

exact solution for SIE appears in many fields of sci-

ence and engineering, for example (the SIE model the

lifting force for the aircraft wing, in queuing analysis,

they describe the fulfilment of priority telephone com-

mands, in mechanics SIE model the processes from

elasticity theory [1]-[3]).

In the monographs of mathematicians N. Mushe-

lesvili [4] and I. Vekua [5] have been proved the exact

solution for SIE can be found in some particular cases.

Even in these particular cases, the formula for the ex-

act solution of SIE can be very complex. It can be

represented by nonlinear formulas with multiple sin-

gular integrals.

That is why it is important for both theory and

practices to elaborate on the algorithms which would

permit to find the approximative solutions for SIE and

with the evaluation of approximative errors.

The problem for the approximative solution for

SIE was studied in the scientific literature of math-

ematicians V. Ivanov, B. Gadfulhaev, I Gohberg, V.

Zolotarevski and others [6]-[21].

At the same time, the collocation methods and

mechanical quadrature methods have been applied to

the approximative solving of SIE, when equations are

defined on the unit circle or real axis [28], [2], [9], [8],

[20]. The case when the SIE are defined on the arbi-

trary smooth closed contours have not been studied

enough.

We should mention only the articles [22]-[24].
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The case of SIE non-elliptic, such as SIE with

translation and conjugation of the unknown function

defined on the smooth contours has been studied in

this article. The SIE is defined in Generalized Holder

spaces.

The main purpose of this article consists of the

approximate solution of SIE with translation and con-

jugation for the unknown function.

We should solve the following problems:

1. Demonstration of the compatibility of the elabo-

rated algorithms and fixing the values for the ap-

proximation numbers. Beginning with numbers

starting these algorithms are compatible.

2. Establishing the convergence of approximate so-

lutions to the exact solutions.

3. Getting the convergence error in Generalized

Holder spaces.

4. Researching methods to optimality and stability.

2 Definitions of Function Spaces and

Notations

Let Γ be an arbitrary smooth closed contour bounding

a simply-connected region D+ of the complex plane,

let t = 0 ∈ D+, D− = C \{D+∪Γ}, where C is the

complex plane. We consider the point z = ∞ ∈ D−.
We denote by Λ the class of the smooth closed

countours Γ. For these contours the Riemann function

z = ψ(w) exists. This function is satisfied the condi-

tion: for two positive constants m1(Γ) and M2(Γ) the

following inequality holds:

0 < m1(Γ) ≤ |ψ
′

(w)|≤ M1(Γ) ≤ ∞, |w|= 1.

In this paragraph, the generalized Holder spaces

Hω determined by the continuity modulus ω are de-

scribed. These spaces were introduced in [25]. Also

in this paragraph some results are presented concern-

ing the properties of the singular integral equations,

studied in Hω. These results are applied for obtaining

the theoretical substantiation of collocation and me-

chanical quadrature methods.

By d we denote the size d = diamD+ =

max
∣

∣

∣
t
′

− t
′′

∣

∣

∣
, t

′

, t
′′

∈ Γ. Further more, we assume

that ω(δ) is certain continuity module, and

ω(f, δ) = sup
|t′−t

′′ |≤δ

|f(t
′

)− f(t
′′

)|, , δ ∈ [0; d]

is the continuity modulus of the function f(t), t ∈ Γ.
By Hω = Hω(Γ) we denote the function space

g(t) continuous on Γ (g(t) ∈ C(Γ)) that satisfy the

condition:

H(g; f) ≡ sup
ω(g, δ)

ω(δ)
<∞, , δ ∈ (0; d]

The norm in Hω is defined by the equality:

||g||ω= ||g||C+H(g;ω), (1)

||g||C= max
t∈Γ

|g(t)|

Thus Hω is nonseparable Banach space [26].

We suppose that continuity modulus ω satisfies

the Bari-Stecichin condition [25]:

h
∫

0

ω(ξ)

ξ
dξ <∞, (2)

δ
∫

0

ω(ξ)

ξ
dξ +

h
∫

δ

ω(ξ)

ξ2
dξ = O(ω) = (3)

O(ω(δ)) → 0, δ → +0,

On this case, according to [27] the singular integral

operator

(Sg)(t) =
1

πi

∫

Γ

g(τ)

τ − t
, t ∈ Γ,

is bounded in Hω.
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Theorem 1 Assume that the continuity modulus

ω1(δ) and ω2(δ) satisfy the conditions (2)-(3), simul-

taneously. Then, for every function g(t) ∈ Hω2
the

operator Sg − gS is bounded as an operator acting

from Hω1
to Hω2

, and

||Sg − gS||ω1→ω2
≤ constant||g||ω2

.

Theorem 2 Let the continuity modulus ω1 and ω2

satisfy both conditions (2)-(3). If g(t) ∈ Hω2
, then

the operator Sg−gS mapping theHω2
inHω1

is com-

plitely continious.

The demonstration of these theorems is realized

analogously to the similar outcome get in [25] about

boudness of the operator T = Sg − gS in classicla

Hölder spaces Hβ(Γ) with conditions g(t) ∈ Hα(Γ).
We shoud mention that, in case, when ω1(δ) =

(δβ , 0 < β ≤ α ≤ 1 the spacesHω2
andHω1

coincide

with classical Hödler spacesHβ, and respectively Hα,
but theorems 1 and 2 for this case obtained in [25].

Let Un be the Lagrange interpolating polynomial

(Ung)(t) =

2n
∑

s=0

g(ts) · ls(t), (4)

lj(t) =

2n
∏

k=0,k 6=j

t− tk
tj − tk

(

tj
t

)n

≡

n
∑

k=−n

Λ
(j)
k tk, t ∈ Γ, j = 0, . . . , 2n.

The constant

λn(Γ) = λn = max
t∈Γ

2n
∑

j=0

|lj(t)|

is the Lebesgue interpolation constant for the contour

Γ for the points tj, j = 0, 2n.

Theorem 3 Let Γ ∈ Λ and the points tj = t
(θ)
j (j =

0, 2n) forms the system of the Fejér points on Γ :

t
(θ)
j = ψ(ω

(θ)
j ,

ω
(θ)
j = exp

{[

2π

2n+ 1
(j − n) + θ

]

i

}

,

0 ≤ θ ≤ 2π, j = 0, 2n, i2 = −1. (5)

Then, the positive constants exist m2(Γ), M2(Γ), and

M
′

2(Γ), so that, for ∀ natural n, the following relation

holds for Lebegue interpolation contants λn, defined

in (5).

0 < m2(Γ) ln(2n + 1) ≤ λn ≤

M2(Γ) +M
′

2(Γ) ln(2n+ 1).

Theorem 4 Let ω1(δ), ω2(δ), δ ∈ (0; l], satisfy

the conditions (2)-(3), so that the function Φ(σ) =
ω1(δ)/ω2(δ) nondecreasing on (0; l]. Then, for ev-

ery function g(t) from H(ω1 the following inequality

takes place:

||g − Ung||ω2
≤ (d1 + d2|Un||C)Φ(1/n)H(g;ω2)

Remark 5 If the points {tj}
2n
j=0 are form the system of

Fejér points on Γ (5) and limn→∞Φ(1/n) lnn = 0,
then

lim
n→∞

||g − Ung||ω2
= 0,∀g(t) ∈ H(ω1).

Remark 6 Letω(δ) is an arbitrary module of continu-

ity, which satisfies the conditions (2)-(3), then ||Un||≤
(d11 ln(2n + 1)), Un : H(ω) → H(ω)

3 Problem Formulation. Singular

Integral Equations with Complex

Conjugation

In H(ω) we study the SIE which contains the uknown

complex conjugation function:
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(Rφ ≡)c1(t)φ(t) +
d1(t)

πi

∫

Γ

φ(τ)

τ − t
dτ + c2(t)φ(t)+

d2(t)

πi

∫

Γ

φ(τ)

τ − t
dτ +

1

2πi

∫

Γ

h1(t, τ)φ(τ)dτ+

1

2πi

∫

Γ

h2(t, τ)φ(τ)dτ = f(t), t ∈ Γ, (6)

where ck, dk and hk(t, τ) by both variables), k =
1, 2 . . . , are known functions in H(ω)and φ(t) is un-

known function.

The general theory for (6) was studied very de-

tailedly in the scientific literature. But, the problem

for the approximate solution for this equation is not

studied enough. We will elaborate on the numer-

ical schemes: collocation methods and mechanical

quadrature methods for the approximate solution of

(6). The SIE is defined on an arbitrary smooth closed

contour of the complex plane. The theoretical back-

ground was obtained in Generalized Holder spaces.

We introduce the new unknown functions,

φ1(t) = φ(t) and φ2(t) = φ(t), we will introduce to

the equation (6), which was obtained from (6) using

the complex variable. Taking into account the rela-

tions, we obtain:

1

πi

∫

Γ

φ(τ)

τ − t
dτ =

1

πi

∫

Γ

φ(τ)

τ − t
dτ+

2

π

∫

Γ

∂θ

∂σ
φ(τ)

θ = arg(τ − t), τ = τ(σ), (σ ∈ (0, l]; l is the the

length for contour Γ), is the equation for contour Γ, σ
is the abscisse for arcs and,

1

πi

∫

Γ
h(t, τ)φ(τ)dτ = −

1

πi

∫

Γ
h(t, τ)φ(τ)(τ ′)2(σ)dτ,

We obtain the following system of SIE which not con-

tain conjugates:

c1(t)φ1(t) +
d1(t)

πi

∫

Γ

φ1(τ)

τ − t
dτ + c2(t)φ2(t)+

d2(t)

πi

∫

Γ

φ2(τ)

τ − t
dτ +

1

2πi

∫

Γ

h1(t, τ)φ1(τ)dτ+

1

2πi

∫

Γ

h2(t, τ)φ2(τ)dτ = f(t), t ∈ Γ, (7)

c2(t)φ1(t) +
d2(t)

πi

∫

Γ

φ1(τ)

τ − t
dτ + c1(t)φ2(t)−

d1(t)

πi

∫

Γ

φ2(τ)

τ − t
dτ −

1

2πi

∫

Γ

h2(t, τ)τ
′2(σ)φ1(τ)dτ+

2d2(t)

π

∫

Γ

∂θ

∂σ
φ1(τ)dτ−

1

2πi

∫

Γ

h2(t, τ)τ
′2(σ)φ2(τ)dτ+ (8)

2d1(t)

π

∫

Γ

∂θ

∂σ
φ2(τ)dτ = f(t), t ∈ Γ,

for the vector {ϕ1(t), ϕ2(t)} .

The function η(σ, s) = ∂θ(σ,s)
∂σ

can be represented

in the form

η(σ, s) =
k(σ, s)

|σ − s|λ
; (9)

0 ≤ σ, s ≤ l, λ ∈ (1− µ, 1),

and the function satisfies the Holder conditions by

both variables.

We suppose that the kernels h1(t, τ) and h2(t, τ)
satisfy on the Γ × Γ the Holder conditions. Then,

the integral operator with kernels hk(t, τ) and

hk(t, τ)τ
′2(σ) (k = 1, 2), transform from Hω1

→
Hω2

.
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On this case the right part belongs to the Holder

spaces. The SIE (6) and (7) are equilivalent in sense, if

the equation (6) has an unique solution ϕ(t), the sys-

tem (7) has an unique solution
{

ϕ(t), ϕ(t)
}

. Inverse,

if the system (7) has an unique solution ϕ1(t), ϕ2(t),
then the SIE (6) has an unique solution ϕ(t). This so-

lution has the form:

ϕ(t) =
1

2
ϕ1(t) +

1

2
ϕ2(t) (10)

Taking into account the results obtained above we will

construct the numerical schemes for collocation and

mechanical quadrature methods for SIE (7). After that

applying the relation (6) and the system (7), we will

obtain the fomulae for obtaining the approximative

solutions for SIE (6). We will transform the system

of S.I.E. (7) in the forms of vectorial equation with

matrix coefficients.

(Mx)(t) ≡ C(t)x(t) +
D(t)

πi

∫

Γ

x(τ)

τ − t
dτ+ (11)

1

2πi

∫

Γ
H(t, τ)x(τ)dτ = F (t), t ∈ Γ,

where C(t),D(t) and H(t, τ) are matrix functions of

second order, and F (t) and x(t) are vector functions

of second order.

C(t) =

[

c1(t) c2(t)

c1(t) c2(t)

]

(12)

D(t) =

[

d1(t) d2(t)

−d2(t) d1(t)

]

H(t, τ) =

[

h1(t, τ)

−h2(t, τ)τ2
′ + 4πid2(t)

∂θ
∂σ

]

[

h2(t, τ)

−h1(t, τ)τ2
′ + 4πid2(t)

∂θ
∂σ

]

F (t) = [f(t); f(t)], x(t) = [x1(t);x2(t)]

The system of SIE (11) is the equation of Noether

type, if

det[C(t)±D(t(] 6= 0, t ∈ Γ.

From the condition above we can verify that

∆(t) = [c1(t) + d1(t)][c1(t) + d1(t)]−

[c2(t) + d2(t)][c2(t) + d2(t)] 6= 0. (13)

We suppose that the condition (13) takes place. We

will study the elliptic case which contains the conju-

gation unknown function.

As, the kernel H(t, τ) for the system (11) con-

tains the weak singularity of order λ λ ∈ (1 − µ, 1),
that is why the application of collocation methods is

difficult and quadrature methods cannot be applied.

We will introduce the new equation, the kernel will be

in Hoder spaces.

We will study the new system of SIE. This equa-

tion is very similar to the equation (11), the kernel will

not contain the singularities. We can apply the col-

location and mechanical quadrature methods for this

equation for this new equation.

Let ρ is an arbitrary positive number. We denote

by ηρ(σ, s)

ηρ(σ, s) =

{

η(σ, s), for|σ − s|≥ ρ,

ρ−λk(σ, s), for|σ − s|< ρ

The functions η(σ, s) and k(σ, s) are defined in

(9).

We denote by Hρ(t, τ) the matrix function (m.f.)

from H(t, τ) changing the function ∂θ
∂σ

by func-

tion ηρ(σ, s). We should mention that the function

Hρ(t, τ) does not contain the singularaties. It is

Holder function by both variables.

We will study the system of SIE

(Mρx)(t) ≡ C(t)x(t) +
D(t)

πi

∫

Γ

x(τ)

τ − t
dτ+

+
1

2πi
Hρ(t, τ)x(τ)dτ = F (t), t ∈ Γ, (14)

The approximate solution for collocation methods we

looking for in the form of polynomial bidimenional

vector- function (v.f.)
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xn(t) =

n
∑

k=−n

α
(n)
k tk = (15)

{

n
∑

k=−n

α
(n)
k,1t

k;α
(n)
k,2t

k

}

, t ∈ Γ,

with unknown coefficients α
(n)
k = αk = {αk,1;αk,2} ,

k = −n, n.

4 Numerical Schemes for Colloca-

tion Methods.

Let Θn(t) = Mρxn(t) − F (t) be the residual of

SIDE. The collocation method consists in setting it

equal to zero at some distinct points tj , j = 0, . . . , 2n
on Γ. Thus we obtain a system of linear algebraic

equations (SLAE) for the unknown complex numbers

ξk, (k = −n, . . . , n) which can be determined by

solving

Θn(tj) = (Mρxn)(tj)− F (tj) = 0, (16)

j = 0, . . . , 2n.

From the conditions (16) we obtain the following

SLAE for unkowns αk = {αk,1;αk,2 k = −n, n :

n
∑

k=0

[C(tj) +D(tj)]t
k
jαk

−1
∑

k=−n

[C(tj)−D(tj)]t
k
jαk+

−1
∑

k=−n

1

2πi

∫

Γ
Hρ(t; τ)τ

kdταk (17)

= F (tj), j = 0, . . . , 2n.

5 Numerical Schemes for Mechani-

cal Quadrature Methods

We approximate the integrals in SLAE (17) by

quadrature formula:

1

2πi

∫

Γ
τkg(τ)dτ ≡

1

2πi

∫

Γ
Un[g(τ)]τ

k−1 =

2n
∑

r=0

g(tr)trΛ
(r)
−k, k = −n, n,

where Un is Lagrage interpolation polynomial (4). We

obtaint the SLAE for quadrature methods:

n
∑

k=0

[C(tj) +D(tj)]t
k
jαk

−1
∑

k=−n

[C(tj)−D(tj)]t
k
jαk+

−1
∑

k=−n

2n
∑

r=0

Hρ(tj ; τ)τrΛ
(r)
−kαk (18)

= F (tj), j = 0, 2nl

The numbers Λ
(r)
−k r = 0, 2n k = −n, n are defined in

(4).

6 Convergence Theorems

We present the Theorems (7) and (8) which give the

theoretical background for collocation and mechani-

cal quadrature methods in Generalized Holder spaces.

We suppose that the contour Γ is Lyapunov contour

with smooth index µ(0; 1). It is very important for the

smoothness of function η(t, s).
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Theorem 7 Let the following conditions be satisfied:

1) the functions ck(t), dk(t) and hk(t, τ), k = 1, 2 be-

longs to Hω1
;

2) ∆(t) satisfies the condition (13);

3) the left partial indices of M.F. [C(t) −
D(t)]−1[C(t) +D(t)] are equal zero;

4) dimKerM = 0;

5) β satisifies the condition β ∈ (0; δ), δ =
min(µ; alpha) If the points tj form the system of Fe-

jer points (5) on Γ. Then, for the enough large values

n ≥ n1, and values ρ small enough the SLAE (17) has

an unique solution αk = {αk1, αk2}, k = −n, n. The

approximate solutions ϕn,ρ(t) calculated by formula

ϕn,ρ =
1

2

n
∑

k=−n

(αk1t
k + ᾱk2t̄

k)

converge when n → ∞ and ρ → 0 in the norm of the

space H(ω2) for ∀f(t) ∈ H(ω1) to the exact solution

ϕ(t) of SIE in sens that

lim
n→∞

lim
ρ→0

||ϕ− ϕn,ρ||ω2
, (19)

and the following estimation for the convergence is

true:

||ϕ− ϕn,ρ||ω2
= (1/n)O(Φ(1/n ln n) +O(ρµ).

The proof of this theorem is very similar to the proof

from [6] for collocation methods.

Theorem 8 Let the conditions (1-4) from the theo-

rem 7 be satisfied. The condition 5) is changed by

β ∈ (0; ν), ν = min(γ;α), γ = min(µ; 1 − µ). If

the points tj form the system of Fejer points (5) on Γ.
Then, for the enough large values n ≥ n2, and values

ρ small enough the SLAE (18) has an unique solution

αρ
k = {αρ

k1, α
ρ
k2}, k = −n, n. The approximate solu-

tions ϕn,ρ(t) calculated by formula

ϕn,ρ =
1

2

n
∑

k=−n

(αρ
k1t

k + ᾱρ
k2t̄

k)

converge when n → ∞ and ρ → 0 in the norm

of the space H(ω2) for ∀f(t) ∈ H(ω1) to the exact

solution ϕ(t) of SIE in sens that

lim
n→∞

lim
ρ→0

||ϕ− ϕn,ρ||ω2
, (20)

and the following estimation for the convergence is

true:

||ϕ− ϕn,ρ||ω2
= (1/n)O(Φ(1/n ln2 n) +O(ργ).

The proof of this theorem is very similar to the proof

from [6] for mechanical quadrature methods.
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