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Abstract: The concept of an equivariant map naturally arises in the study of manifolds with actions of a fixed group:
equivariant maps are maps that commute with group actions on the source and target. An equivariant automorphism
of the source of equivariant maps preserves their equivariance. Therefore, the group of equivariant automorphisms
of a manifold acts on the space of equivariant maps of this manifold. The structure of orbits of this action is often
complicated: it can include discrete (finite or countable) families of orbits as well as continuous ones. An orbit is
called equivariant simple if its sufficiently small neighborhood intersects only a finite number of other orbits. In
this paper we study singular multivariate holomorphic function germs that are equivariant simple with respect to a
pair of actions of a finite cyclic group on the source and target. We present a necessary existence condition for such
germs in terms of dimensions of certain vector spaces defined by group actions. As an application of this result, we
describe scalar actions of finite cyclic groups for which there exist no equivariant simple singular function germs.
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1 Introduction
In the study of manifolds with actions of a fixed group
it is natural to consider maps that commute with group
actions on the source and target.

Definition 1 Given two actions of a group G on sets
M and N , we call a map f : M → N equivariant
if the condition f(σ · m) = σ · f(m) holds for all
σ ∈ G, m ∈M .

In particular, this definition can be applied to germs
of holomorphic functions f : (Cn, 0)→ (C, 0) and of
biholomorphic automorphisms Φ: (Cn, 0)→ (Cn, 0)
whenever actions of G are defined on Cn and C.

The group DGGn of equivariant biholomorphic
germs Φ: (Cn, 0) → (Cn, 0) acts on the space
OGGn of equivariant holomorphic function germs
f : (Cn, 0) → (C, 0). This infinite-dimensional space
is split into orbits of this action, and so are finite-
dimensional spaces jrOGGn of r-jets at 0 of germs
from OGGn . We introduce an equivalence relation on
the spaceOGGn : two germs will be called equivalent if
they belong to the same orbit.

Definition 2 Two germs f, g ∈ OGGn are called
equivariant right equivalent if there exists a germ
Φ ∈ DGGn such that g = f ◦ Φ.

It is of interest to study the orbits of the action of
DGGn on OGGn , or, in other terms, to classify equiv-

ariant function germs with respect to equivariant right
equivalence. In the description of the structure of the
orbit space, which is often complicated, the following
notion is used.

Definition 3 An orbit DGGn (jrg) ⊂ jrOGGn is
said to be adjacent to the orbit DGGn (jrf) if any
neighborhood of some point in DGGn (jrf) intersects
DGGn (jrg).

The orbits of equivariant function germs can in-
clude both discrete (finite or countable) and continu-
ous families of orbits. Discrete families make up the
“simplest” part of the orbit space. This motivates the
following definition.

Definition 4 A germ f ∈ OGGn is called equivariant
simple if for all r ∈ N the orbit DGGn (jrf) ⊂ jrOGGn
has a finite number of adjacent orbits, and this num-
ber is bounded from above by a constant independent
of r.

It is worth mentioning that an equivariant non-
singular function germ is always equivariant right
equivalent to its linear part, and therefore all non-
singular equivariant germs are equivariant simple.
This is why we are only interested in studying equiv-
ariant simple germs with a critical point 0 ∈ Cn.

There exists a general problem to classify equiv-
ariant simple singular function germs up to equivari-
ant right equivalence for a given finite abelian groupG
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and a pair of its actions on the source and target. This
problem naturally generalizes a similar one for the
non-equivariant case solved by V. I. Arnold in 1972
(cf. [1]).

Several results are known in the equivariant set-
ting for the group G = Z2. In [2] simple singularities
of functions on manifolds with boundary are classi-
fied, and the complex analogue of this result is the
classification of simple singularities that are even in
the first coordinate (i.e., equivariant with respect to
the action of Z2 on Cn in the first coordinate and the
trivial action on C). A similar problem arises in [3]
in connection with the classification of simple func-
tions on space curves. In [4] the classification of odd
(i.e., equivariant with respect to non-trivial scalar ac-
tions of Z2 on Cn and on C) simple germs is given
(it is proved, in particular, that no such germs exist for
n ≥ 3). In [5] and [6] the problem is solved for bivari-
ate functions that are equivariant simple with respect
to certain actions of Z3.

Certain calculation techniques for the classifica-
tion singularities with special attention to the equiv-
ariant case are presented in [7], [8], [9]. Some re-
cent results connected with classification of equivari-
ant maps, vector fields and differential equations can
be found in [10]-[14].

In this paper we study conditions on finite cyclic
group actions under which there exist no equivari-
ant simple singularities. A necessary condition for
existence of equivariant simple singularities is given.
As an application we describe scalar actions of finite
cyclic groups for which there exist no equivariant sim-
ple singular functions.

In Section 2 we describe equivariance conditions
for holomorphic function and automorphism germs.
In Section 3 a necessary condition for existence of
equivariant simple singularities in terms of dimen-
sions of certain vector spaces defined by group actions
is given. In Section 4 we study equivariant simple sin-
gularities for the scalar action of Zm on Cn. In Sec-
tion 5 we sum up the results of the paper and list some
open questions.

2 Equivariant function and auto-
morphism germs

It is known that an action of a finite group on a vector
space can be linearized in a suitable system of coordi-
nates due to a particular case of Bochner’s lineariza-
tion theorem (cf. [15]). Throughout this paper we
assume that the generator σ ∈ G = Zm acts on Cn

and on C in the following way:

σ · (z1, . . . , zn) = (τp1z1, . . . , τ
pnzn) ,

σ · z = τ qz,
(1)

where τ = exp
(
2πi
m

)
and the integers p1, . . . , pn, q

are considered modulo m. In fact we will always
choose 0 < p1, . . . , pn, q ≤ m.

Remark 5 Without loss of generality we can assume
that gcd(p1, . . . , pn, q) = 1. If gcd(p1, . . . , pn, q) =
d > 1 and d - m, then one can divide all ps and q by
d and obtain a pair of actions that is equivalent to the
original one (these two cases coincide up to the choice
of generator in Zm). If gcd(p1, . . . , pn, q) = d > 1
and d | m, then the given actions of the group Zm
can be considered as actions of its subgroup Zm/d.
Moreover, we can assume that gcd(p1, . . . , pn) = 1.
If gcd(p1, . . . , pn) = d > 1, but gcd(p1, . . . , pn, q) =
1, then d - q, which implies that no monomials are
equivariant with respect to actions (1).

Suppose that the actions of G = Zm on Cn and
on C are given by formulae (1). Any holomorphic
function germ f : (Cn, 0)→ (C, 0) in a neighborhood
of 0 can be represented by a power series

f(z) =
∑
J∈Zn

≥0

aJzJ . (2)

Here J = (j1, . . . , jn), z = (z1, . . . , zn), aJ ∈
C, zJ = zj11 . . . zjnn . It is obvious that f ∈ OGGn if and
only if aJ = 0 whenever

∑n
s=1 psjs 6≡ q (mod m).

Any germ of a biholomorphic automorphism
Φ: (Cn, 0) → (Cn, 0) in a neighborhood of 0 can be
represented by n power series of the form

zk =
∑
J∈Zn

≥0

ak,J z̃J , (3)

where ak,J ∈ C, z̃ = (z̃1, . . . , z̃n) are new variables,
z̃J = z̃j11 . . . z̃jnn and the matrix of the linear part of
Φ is non-degenerate. It is obvious that Φ ∈ DGGn
if and only if ak,J = 0 whenever

∑n
s=1 psjs 6≡ pk

(mod m).
The equivariance conditions for function and au-

tomorphism germs given by power series admit a
geometric interpretation. To each monomial zJ =

zj11 . . . zjnn we associate the point J = (j1, . . . , jn) ∈
Zn≥0. All points in Zn associated to equivariant mono-
mials lie in hyperplanes with the normal vector
(p1, . . . , pn). For monomials of a germ f defined by
(2) these hyperplanes are given by equations of the
form

p1j1 + . . .+ pnjn = km+ q (k ∈ Z≥0), (4)
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while for monomials of maps zl = zl(z̃) defined by
(3) they are given by equations of the form

p1j1 + . . .+ pnjn = km+ pl (k ∈ Z≥0). (5)

Note that under the choice of p1, . . . , pn, q made
above these hyperplanes intersect all coordinate axes
at points with positive (but not necesserily integral)
coordinates, and thus the intersection of such a hy-
perplane with the positive octant Zn≥0 contains only a
finite number of integral points.

Definition 6 Given an n-tuple α = (α1, . . . , αn)
of natural numbers (weights), we define the quasi-
degree with weights α of a monomial zJ = zj11 . . . zjnn
to be equal to

degα
(
zJ
)

= 〈α, J〉 = α1j1 + . . .+ αnjn.

The quasi-degree of a polynomial is defined to be the
highest quasi-degree of its monomials.

Definition 7 The r-quasi-jet with weights α of a
germ f given by power series (2) is the sum of all
its monomials that have quasi-degrees with weights α
not exceeding r:

jαr f =
∑

J∈Zn
≥0:

〈α,J〉≤r

aJzJ .

All r-quasi-jets of holomorphic function germs
with given weights α form a finite-dimensional vector
space, which is exactly the space of polynomials of
quasi-degree r with weights α. We denote this space
by jαr On.

For the spaceOZmZm
n of function germs equivari-

ant with respect to actions (1) there exists a natural
choice of weights α. Namely, one can take αs = ps
for s = 1, . . . , n. Under this choice of weights, a
monomial is equivariant if and only if its quasi-degree
with weights α equals km+q for some k ∈ Z≥0. This
implies that the corresponding r-quasi-jet spaces can
only increase when r increases by m:

∅ = j
α
1O

ZmZm
n = . . . = j

α
q−1O

ZmZm
n ⊂ jαq OZmZm

n =

= . . . = j
α
m+q−1O

ZmZm
n ⊂ jαm+qOZmZm

n = . . . =

= j
α
2m+q−1O

ZmZm
n ⊂ . . . .

However, this is not the only set of weights with such
a property.

Example 8 For example, assume that the generator
σ ∈ G = Z3 acts on C2 and on C as follows:

σ · (z1, z2) = (τz1, τ
2z2); σ · z = τz.

For weights α = (1, 2) suggested above, a mono-
mial is equivariant if and only if its quasi-degree with
weights α equals 3k + 1 for some k ∈ Z≥0. For
weights β = (2, 1), a monomial is equivariant if and
only if its quasi-degree with weights β equals 3k + 2
for some k ∈ Z≥0). In both cases the corresponding
r–quasi-jet spaces increase when r increases by 3.

This example motivates the following definition.

Definition 9 A set of weights α = (α1, . . . , αn) ∈
Nn is called admissible with respect to actions (1) of
G = Zm on Cn and on C if it satisfies the following
conditions:
1) gcd(α1, . . . , αn) = 1;
2) for all s ∈ [1, n] the inequalities 1 ≤ αs ≤ m hold;
3) a monomial is equivariant with respect to actions
(1) if and only if its quasi-degree (with weights α) has
a certain excess modm.

Remark 10 In the case of actions (1) the choice of
weights αs = ps (s = 1, . . . , n) suggested above
provides an admissible set of weights. The fact
that this set of weights satisfies conditions 1 and 2
of the definition above follows from the assumption
gcd(p1, . . . , pn) = 1 explained in Remark 5 and the
choice of p1, . . . , pn, q made prior to that remark.

3 Necessary existence condition
Remark 11 It is worth mentioning that equivariant
simple singularities can be defined in terms of quasi-
jet spaces jαr OGGn in a way similar to the original Def-
inition 4. It is straightforward to check that equivari-
ant simplicity in terms of quasi-jets (with any admis-
sible set of weights) is equivalent to equivariant sim-
plicity in terms of ordinary jets.

In the following sections we will mostly check
equivariant simplicity in terms of quasi-jets, which
will be especially convenient for admissible sets of
weights. Therefore we are interested in studying
the way in which a biholomorphic equivariant auto-
morphism germ of form (3) acts on quasi-jet spaces
j
α
r OGGn .

The classification of function germs is usually
performed step by step starting from non-trivial jets
of the lowest degree. In the equivariant case the same
is done for quasi-jets. The following lemma describes
the action of automorphism germs from DZmZm

n on
the non-trivial quasi-jet space of lowest quasi-degree.

Lemma 12 Let Φ ∈ DZmZm
n be a biholomorphic au-

tomorphism germ equivariant with respect to action
(1) of the group G = Zm on Cn defined by n power
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series of form (3). Let f ∈ OZmZm
n be a holomorphic

function germ equivariant with respect to actions (1)
of G on Cn and on C. Suppose that α = (α1, . . . , αn)
is a set of weights admissible with respect to ac-
tions (1), and jαr−1f = 0 6= j

α
r f. Then the quasi-jet

j
α
r (f ◦ Φ) depends only on those terms of series (3)

whose exponents satisfy one of the following condi-
tions: ∑n

s=1
αsjs = αk. (6)

Lemma 12 follows directly from the multiplication
rule for power series.

Remark 13 Geometrically, equation (6) for each
k = 1, . . . , n defines a hyperplane in Zn with nor-
mal vector (α1, . . . , αn) passing through the point
(0, . . . , 1k, . . . , 0).

Therefore, under the conditions of Lemma 12
a group of transformations depending on parame-
ters acts on the quasi-jet space jαr OZmZm

n . The num-
ber of these parameters (i.e., the dimension of the
group) equals the number of solutions in Zn≥0 to sys-

tem of equations (6) in the variables
{
j
(k)
s

}
(k =

1, . . . , n), which is also equal to the number of in-
teger points with non-negative coordinates in hyper-
planes (6). We denote this number by Dα

r . We also
put dαr = dim

(
j
α
r OZmZm

n /j
α
r−1OZmZm

n

)
, which is

the dimension of the space of quasi-degree r (with
weights α) equivariant polynomials. It follows from
Lemma 12 that if 0 = d

α
0 = d

α
1 = . . . = d

α
r−1 6=

d
α
r > D

α
r , then the orbits of the action of DZmZm

n on
j
α
r OZmZm

n form at least (d
α
r − D

α
r )-parameter fami-

lies. This implies the following statement.

Theorem 14 Let α = (α1, . . . , αn) be an admissible
set of weights with respect to actions (1) of the group
G = Zm on Cn and on C. If 0 = d

α
0 = d

α
1 = . . . =

d
α
r−1 6= d

α
r > D

α
r (in the notation chosen above), then

there exist no holomorphic function germs in OZmZm
n

that are equivariant simple with respect to actions (1).

Theorem 14 gives a necessary condition for exis-
tence of equivariant simple singular germs (or, equiv-
alently, a sufficient condition for nonexistence of
equivariant simple singular germs).

4 Scalar actions of G = Zm, m ≥ 3

In this section we study equivariant simple singular-
ities in OZmZm

n in the case when the action of G =
Zm, m ≥ 3 on Cn is scalar. We will only consider
the case n ≥ 2 (the case n = 1 is trivial). Without

loss of generality we can assume that the actions of
the group on the source and target are given by the
formulae

σ · (z1, . . . , zn) = (τz1, . . . , τzn) ;

σ · z = τ qz,
(7)

where σ ∈ Zm is a generator, τ =
(
2πi
m

)
. The result

essentially depends on the excess q mod m. For the
rest of this section we choose q ∈ [1,m].

Theorem 15 (cf. [5, Theorem 1]) Suppose the action
of the group Zm on Cn and C is given by formulae (7)
with q = 1. For m ≥ 3, n ≥ 2 there exist no equiv-
ariant simple singular function germs in OZmZm

n .

Proof: Take α = (1, . . . , 1). Then 0 = d
α
0 = d

α
1 =

. . . = d
α
m, while dαm+1 =

(
n+m
n−1

)
. At the same time,

D
α
m+1 = n2, because due to Lemma 12, the (m+ 1)-

jets of singular equivariant germs depend only on the
linear parts of automorphism germs from DZmZm

n . Fi-
nally, it is straightforward to check (e.g. by induction
on m) that whenever m ≥ 3, n ≥ 2, the inequality(
n+m
n−1

)
> n2 holds. Therefore, the statement of the

theorem follows from Theorem 14. ut

Remark 16 For m = 2 equivariant simple singular
germs with respect to actions (7) with q = 1 are clas-
sified in [4].

Theorem 17 Suppose the action of G = Zm on Cn
and C is given by formulae (7) with q = 2. A singular
equivariant germ f : (Cn, 0) → (C, 0) is equivariant
simple with respect to the given actions if and only if
it is equivalent to one of the following germs:

(z1, . . . , zn) 7→ zmk+2
1 +z22+. . .+z2n (k ∈ Z≥0). (8)

Proof: The proof is based on the following two lem-
mas.

Lemma 18 In a neighborhood of the origin there
exists an equivariant change of coordinates x =
x(x̃, ỹ), y = y(x̃, ỹ) that gives the germ f the
form f(x̃, ỹ) = ϕ(x̃) + Q(ỹ), where Q is a non-
degenerate quadratic form, dim{ỹ} = rk(d2f |0) =
ρ, dim{x̃} = n− ρ.

Proof of Lemma 18: The lemma is proved similarly
to [1, Lemma 4.1]. The only required modification for
the equivariant case is the Morse lemma with parame-
ter: we need to prove that a family of equivariant func-
tions that depends analytically on the parameter and
has a critical point analytically depending on the pa-
rameter with critical value 0 is equivariant right equiv-
alent to a sum of squares. The corresponding coordi-
nate change can be obtained in the same way as in the
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proof of the ordinary Morse lemma (cf. [16, Lemma
2.2]); the equivariance of this coordinate change fol-
lows from its explicit form. ut

Lemma 19 In the notation of Lemma 18 the inequal-
ity ρ ≥ n− 1 holds.

Proof of Lemma 19: If ρ < n−1, then ϕ is an equiv-
ariant function germ in two or more variables with a
trivial (m+1)-jet. Therefore its lowest degree nontriv-
ial jet is of degree greater than or equal to m+ 2 ≥ 5.
But the classification of forms of degree 5 and higher
in two or more variables contains moduli (i.e., contin-
uous parameters), and therefore, in this case the germ
f will not be equivariant simple. ut

Now we can finish the proof of Theorem 17. If
ρ = n, then f is a non-degenerate quadratic form in
n variables that is linearly equivalent to the sum of
squares, i.e., has the form (8) with k = 0. If ρ = n−1,
consider the equivariant function ϕ in one variable.
If all of its derivatives vanish at the origin, then f is
not equivariant simple (all orbits x̃3k+2 + Q(ỹ) are
adjacent to the orbit of f .) If ϕ(i)(0) = 0 for 0 ≤
i ≤ 3k + 1, but ϕ(3k+2)(0) 6= 0 (k ∈ N), then the
germ f is equivalent to germ (8) with the same k. Each
of germs (8) is equivariant simple: adjacent orbits in
jrOZmZm

n for r ≥ 3k + 2 are z3l+2
1 + z22 + . . . + z2n

with 0 ≤ l ≤ k. Any two germs of form (8) with
different values of k are not equivalent because they
have different multiplicities of zero at the origin. ut

Theorem 20 Suppose the action of G = Zm on Cn
and C is given by formulae (7) with q ≥ 3. If q =
3, n = 2, 3 or q ≥ 4, n ≥ 2, then there exist no
equivariant simple function germs in OZmZm

n .

Proof: The proof is similar to the proof of Theorem
15. Take α = (1, . . . , 1). Then (in the notation of
Theorem 14) 0 = d

α
0 = d

α
1 = . . . = d

α
q−1, while

d
α
q =

(
n+q−1
q−1

)
, and Dα

q = n2. From Theorem 14 it
follows that if the inequality

(
n+q−1
q−1

)
> n2 is satis-

fied, then there exist no equivariant simple function
germs in OZmZm

n . For q = 3 this inequality holds
only for n = 2 and n = 3. For q ≥ 4 and n ≥ 2
this inequality is always true, which can be proved by
induction on q. ut

Remark 21 The assumptions of Theorem 20 depend
on the excess q mod m and not on m itself. In partic-
ular, the statement of the theorem holds for q = m.

5 Conclusion
We obtained a necessary condition for existence
of equivariant simple singular holomorphic function

germs for finite cyclic group actions and used it for
the case of scalar actions on the source. This condition
can be used as the first step in classifying equivariant
simple singularities for all possible actions of a given
finite cyclic group on the source and target. However,
the sufficiency of this condition is still an open ques-
tion. Moreover, the application of this result can meet
some technical difficulties, because for a non-scalar
action of the group on the source the calculation of
dimensions that are used in the conditions amounts to
find the number of non-negative integer solutions to
certain systems of diophantine equations. In particu-
lar, the result of Theorem 20 is incomplete: the nec-
essary existence condition does not allow to study the
case q = 3, n ≥ 4 straightforwardly. Further devel-
opment of calculation techniques and possibly com-
puter algorithms for such calculations that might help
to solve this problem is the aim of our future research.
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