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Abstract: In the fields of chemical graph theory, molecular topology, and mathematical 
chemistry, a topological index also known as a connectivity index is a type of a molecular 
descriptor that is calculated based on the molecular graph of a chemical compound.  
These parameters also have applications in drug structures. In this paper, we give some 
new probabilistic results on the first Zagreb, the Platt, Narumi-Katayama and Gordon-
Scantlebury indices in two bucket tree structures. 
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1 Introduction 

Topological indices are numerical parameters of a 
graph which characterize its topology and are 
usually graph invariant. The research and 
application of the first Zagreb index appears mainly 
in mathematical chemistry. The first Zagreb index 
and its variants have been used to study molecular 
complexity, chirality, ZE isomerism, and 
heterosystems, whilst the overall Zagreb indices 
exhibited a potential applicability for deriving 
multilinear regression models [7]. The first Zagreb 
index has also been used in the studies of 
quantitative structure-property or activity 
relationships. For a tree T  of size  n , Li et al. [4] 
studied the extreme values of the first Zagreb index 
of T .  

Definition 1. The first Zagreb index )(GZ  of G  is 
defined as  

,))(d(=Z(G)
V(G)

2
v

v
 

where )vd(  denotes the degree of the vertex v .  

  Thus the first Zagreb index of a graph is defined as 
the sum of the squares of the degrees of all vertices 
in the graph.  This index reflects the extent of 
branching of the molecular carbon-atom skeleton, 

and can thus be viewed as molecular structure-
descriptor. Nikoli c  et al. [7]  studied the 
mathematical properties of this quantity. 

    A path in a graph is a sequence of adjacent edges, 
which do not pass through the same vertex more 
than once, and the length of the path is the number 
of edges in it.  

Definition 2. For a simple graph G , the Godon-
Scantlebury index of  G  is equal to the number of 
paths of length two in G [2] , and the Platt index is 
equal to the total sum of the degrees of all edges in 
G [9] .  

  The first Zagreb index is related to the Gordon-
Scantlebury and Platt indices. Let )(GS , and )(GP  
be the Gordon-Scantlebury index and the Platt index 
of the graph G , respectively. Nikoli c  et al. [6] 
showed   )()(2)( GEGSGZ   and )(2)( GSGP  , 

where  )(GE  is the number of edges of G .  

Definition 3. The Narumi-Katayama [8] index 
)(GN  of G  is defined as  

.)()(
V(G)




v

vdGN  
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2 Bucket tree structures 

Trees are defined as connected graphs without 
cycles. Recursive trees are rooted labelled trees, 
where the root is labelled by 1 and the labels of all 
successors of any node v  are larger than the label of 
v . They are one of the most natural combinatorial 
tree models with applications in several fields, e.g., 
it has been introduced as a model for the spread of 
epidemics, for pyramid schemes, for the family trees 
of preserved copies of ancient texts and furthermore 
it is related to the Bolthausen-Sznitman coalescence 
model. It is easy to show by induction that there are 

)!( 1n   different recursive trees with n  nodes. It is 
of particular interest in applications to assume the 
random recursive tree model and to speak about a 
random recursive tree with n  nodes, which means 
that one of the )!( 1n   possible recursive trees with 

n  nodes is chosen with equal probability, i.e., the 
probability that a particular tree with n  nodes is 
chosen is always )!1/(1 n .  

 An interesting and natural generalization of random 
recursive trees has been introduced by Mahmoud 
and Smythe [5], which are called bucket recursive 
trees. In this model the nodes of a bucket recursive 
tree are buckets, which can contain up to a fixed 
integer amount of 1b  labels. A probabilistic 
description of random bucket recursive trees is 
given by a generalization of the stochastic growth 
rule for ordinary random recursive trees (which are 
the special instance 1b ), where a tree grows by 
progressive attraction of increasing integer labels: 
when inserting label 1n  into an existing bucket 
recursive tree containing n  labels (i.e., containing 
the labels },...,2,1{ n ) all n  existing labels in the tree 

compete to attract the label 1n , where all existing 
labels have equal chance to recruit the new label. If 
the label winning this competition is contained in a 
node with less than b  labels (an unsaturated bucket 
or node), label 1n  is added to this node, otherwise 
if the winning label is contained in a node with 
already b  labels (a saturated bucket or node), label 

1n  is attached to this node as a new bucket 
containing only the label 1n . Starting with a 
single bucket as root node containing only label 1 
leads after 1n  insertion steps, where the labels 

n,...,2  are successively inserted according to this 
growth rule, to a so called random bucket recursive 
tree with n  labels and maximal bucket size b  [5]. 
Of course, the above growth rule for inserting the 
label 1n  could also be formulated by saying that, 
for an existing bucket recursive tree T  with n  

labels, the probability that a certain node Tv  
with capacity bvc  )(1  attracts the new label 

1n  is proportional to the number of labels 
contained in v , i.e., nvc /)( . 

	

Fig. 1. A bucket recursive tree of size 11n  with 
maximal bucket size 2b  (fixed capacities). 

Figure 1 illustrates a bucket recursive tree of size 
11n  with maximal bucket size 2b .  

 Let )(bg  be a real valued function of b  such taht 

0)1( g  and 1)( bg  for all 2b . It is obvious that 

the size of buckets is lesser than n  for  1b . We 
can write this number as )(bgn - . i.e., 

)()( bgnTV - . Since )(2)d( TEv
v

 , thus for a 

bucket recursive tree of size n , 

 )(2)d(
V(G)

bgnv
v

-1- 
.                                   (1) 

Kazemi [3] introduced a new version of bucket 
recursive trees where the nodes are buckets with 
variable capacities labelled with integers n,...,2,1 . In 
fact, the capacity of buckets is a random variable in 
these models. A size- m  bucket recursive tree 

mT

with variable bucket capacities and maximal bucket 
size b  starts with the root labeled by 1. The tree 
grows by progressive attraction of increasing integer 
labels: when inserting label 1j  into an existing 

bucket recursive tree 
jT , except the labels in the 

non-leaf nodes with capacity<b  all labels in the tree 
(containing label 1) compete to attract the label 

1j . For the root node and nodes with capacity b , 

we always produce a new node 1j . But for a leaf 

with capacity c < b , either the label 1j is attached 
to this leaf as a new bucket containing only the label 

1j or is added to that leaf and make a node with 

capacity 1c . This process ends with inserting the 
label m  (i.e., the largest label) in the tree.  Figure 2 
illustrates such a tree of size 11 with 2b . This 
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model can be considered as another generalization 
of random recursive trees ( 1b ). 

 The probability that a certain node v  attracts the 
new label 1n  is proportional to the number of 
labels contained in v . I.e., the probability p , which 

gives the probability that label 1n  is attracted by  

 

Fig. 2.  A bucket recursive tree of size 11 with 
maximal bucket size 2b  (variable capacities). 

node v  in the tree of size n  is ),/()(  nvcp  

where  { bvcTv  )(;  and v  is a non-leaf}. 

  The motivation for studying the topological indices 
of bucket recursive trees is multifold. For example, 
if n  atoms in a branching molecular structure (such 
as dendrimer) are stochastically labelled with 
integers n,...,2,1 , then atoms in different functional 
groups can be considered as the labels of different 
buckets of a bucket recursive tree.  

3 The main results 

Let 
bnZ ,
 be the first Zagreb index of a bucket 

recursive tree of size n  with maximal bucket size b
(fixed capacities). Let 

bnU ,
 be a randomly chosen 

bucket belong to )(TV . If label n  attached to a leaf 

with capacity bvc )( , then 
bnbn ZZ 1,,  . 

Otherwise, by stochastic growth rule of the tree 
discussed in Section 2 and definition of the first 
Zagreb index, 22

,11,, 
 bnUbnbn dZZ , where 

bnUd
,1

 

is the degree of the randomly chosen bucket 
bnU 1, .  

Theorem 1.  For 1 bn ,  

),log(2)(4=)( , nnbZ bn   

).log(8=)( 2
, nbnZar bn OV   

Theorem 2.	As n , 24,
1  bZn

P

bn
 and  

0.
)(1 ,,

=





Pbibi

n

bi i

ZEZ

n
	

Corollary 1.	There exists a random variable Z  such 

that ZZEZ
L

bnbn 
2

)( ,,
, since 

  <)(sup=))((sup ,
2

,, bnnbnbnn ZarZEZE V . 

Thus ,}))(({ 2
,, bnbnbn ZEZ   is uniformly integrable. 

Then ZZEZ
L

bnbn 
2

)( ,,
 and 

bnbnbn ZEZ  })({ ,,
 is 

uniformly integrable. Finally, ZZEZ
D

bnbn  )( ,,  

[1].   

Corollary 2.	 Let 
bnS ,
 and 

bnP ,
 be the Gordon-

Scantlebury and Platt indices of a random bucket 
recursive tree, respectively. Then  

),log(2=)( , nbnSE bn O  

 ),log(1)(2=)( 2
, nnbSar bn OV   

),log(4=)( , nbnPE bn O

),log(1)4(2=)( 2
, nnbPar bn OV   

,2,
1 bSn

P

bn  .4,
1 bPn

P

bn 

 

Theorem 3.	 Let 
bnN ,
 be the Narumi-Katayama 

index of a random bucket recursive tree T  of size n  
with maximal bucket size b . Then for 1 bn ,  

.1
)(1

12=)(
1

1
, 






















in

bg
bNE

bn

i=
bn

 

Corollary 3.	 Let 
nS , 

nN  and 
nP  be the Gordon-

Scantlebury, Nurami-Katayama and Platt indices of 
a random recursive tree, respectively )1( b . Then  

),log(6=)( nnZE n O   ),log(8=)( 2 nnZar n OV   

),log(2=)( nnSE n O    ),log(=)( 2 nnSar n OV   

),log(4=)( nnPE n O    ,)log(4=)( 2 nnPar n OV   
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,1
1

12=)(
2

1






















in
NE

n

i=
n

  2,1  P

nSn   4.1  P

nPn  

Let 
bnZ , , 

bnS , , and 
bnP ,  be the first Zagreb, Gordon-

Scantlebury and Platt indices of another bucket trees 
(variable capacities), respectively. Then  

nbbZ bn 2)1)((2=)( ,  |)),|(log(  n   
nbfbbZar bn ))(1)((4=)( , V .|))|(log( 2  nO  

where and 0(1) f  and for ,2b 0)( bf . With 
the above approach we can obtain:  

|)),|(log(1)(=)( ,  nnbbS bn 
 

n
bf

bbSar bn 1)
4

)(
1)((=)( , V

 

|)),|(log( 2  n  

|)),|(log(1)(2=)( ,  nnbbP bn   

n
bf

bbPar bn 1)
4

)(
1)(4(=)( , V

|)),|(log( 2  n  

1),(,
1  bbSn

P

bn   1).(2,
1  bbPn

P

bn  

If 1,b  then 0||   [3] and we can see all results 
are the same for two models. 
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