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Abstract: A new approach to solve Chance constrained Portfolio Optimization Problems (CPOPs) without using
the Monte Carlo simulation is proposed. Specifically, according to Chebyshev inequality, the prediction interval of
a stochastic function value included in CPOP is estimated from a set of samples. By using the prediction interval,
CPOP is transformed into Lower-bound Portfolio Optimization Problem (LPOP). It is proved that the feasible
solution of LPOP is also feasible for CPOP. Furthermore, in order to solve LPOP, Differential Evolution (DE) is
used. Finally, through a numerical experiment, the usefulness of the proposed approach is demonstrated.
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1 Introduction
The theory of portfolio optimization was provided
by Markowitz [1]. The Markowitz model evaluates
the risk of investment by the variance of its return.
Thereby, the model takes a balance between the total
return and the risk aversion by choosing their weights
appropriately. Even though the Markowitz model
is a standard formulation of portfolio optimization,
there are some questions to be answered including
the choice of the weights. Therefore, the Markowitz
model has been greatly developed nowadays [2, 3].

Kataoka [2] formulated the portfolio selection as
a chance constrained optimization problem in which
the quantile criterion was introduced with a specified
probability α ∈ (0, 1). The Kataoka model is called
Chance constrained Portfolio Optimization Problem
(CPOP) in this paper. The risk of investment can be
limited by a specified probability in CPOP. However,
CPOP is usually difficult to solve. That is because the
probability that the chance constraint is satisfied has to
be evaluated empirically by using a time-consuming
Monte Carlo simulation [4]. Therefore, instead of the
theory of probability, the fuzzy theory is used widely
to formulate modified CPOPs [5, 6, 7, 8, 9].

A new technique has recently been proposed to
solve chance constrained optimization problems with-
out using the time-consuming Monte Carlo simula-
tion [10]. This paper applies the new technique to
the primitive CPOP. Specifically, by using Chebyshev
inequality, CPOP is transformed into Lower-bound
Portfolio Optimization Problem (LPOP). It is proved

that the feasible solution of LPOP is also feasible for
CPOP. Furthermore, one of the powerful evolutionary
algorithms, namely Differential Evolution (DE) [11],
is used to find the optimal solution of LPOP.

The rest of this paper is organized as follows.
Section 2 describes CPOP briefly. According to the
new approach, CPOP is transformed into LPOP in
Section 3. Section 4 presents DE for solving LPOP.
Section 5 shows the result of numerical experiments
conducted on an instance of CPOP. Finally, Section 6
gives conclusion and future work.

2 Portfolio Optimization
We describe CPOP [2]. First of all, we assume that
a portfolio is composed by D assets. Let xi ∈ �,
i = 1, · · · , D be a ratio of the i-asset. Therefore, a
vector of decision variables of CPOP is represented as
x = (x1, · · · , xD) ∈ X , X = [0, 1]D ⊆ �D.

The unit investment in the i-asset provides the
random return ξi over a considered fixed period. We
assume that the vector of random returns ξ ∈ �D is
characterized by a multivariate normal distribution

ξ ∼ N (μ, V ) (1)

with mean μ ∈ �D and covariance matrix:

V =

⎡
⎢⎢⎢⎣

σ11 σ12 · · · σ1D
σ21 σ22 · · · σ2D

...
...

. . .
...

σD1 σD2 · · · σDD

⎤
⎥⎥⎥⎦ . (2)
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We try to maximize the expected total return
g(x, ξ) = ξT x for a given probability α ∈ (0, 1),
which denotes the risk of the investment. By using an
objective variable γ ∈ �, CPOP is formulated as⎡

⎢⎢⎣
max
x∈X

γ

sub. to Pr(g(x, ξ) ≥ γ) ≥ 1− α,

x1 + x2 + · · ·+ xD = 1

(3)

where Pr(e) denotes the probability of an event e.

3 Proposed Approach
3.1 Chebyshev Inequality
Due to ξ ∈ �D, different function values g(x, ξ) are
observed in (3) for repeated evaluations of the same
solution x ∈ X . If the mean μ(x) and the variance
σ2(x) of the random variable g(x, ξ) was known,
Chebyshev inequality [12] could be stated as

Pr(|g(x, ξ)− μ(x)| ≥ λσ(x)) ≤ 1

λ2
(4)

where λ > 1 is an arbitrary real number.
Chebyshev inequality has great utility because it

can be applied to completely arbitrary distributions.
However, the values of μ(x) and σ2(x) used in (4)
are usually unknown. Therefore, Saw et al. [13] have
extended Chebyshev inequality in (4) to cases where
the mean and variance are not known and may not ex-
ist, but you want to use the sample mean and sample
variance from N samples to bound the expected value
of a new drawing from the same distribution.

First of all, we take N samples of g(x, ξ) as

g(x, ξn) = (ξn)T x

= ξn1 x1 + ξn2 x2 + · · ·+ ξnD xD
(5)

where ξn ∼ N (μ, V ), n = 1, 2, · · · , N .
From the set of samples in (5), the sample mean

g(x) and the sample variance s2(x) are obtained as

g(x) =
1

N

N∑
n=1

g(x, ξn), (6)

s2(x) =
1

N − 1

N∑
n=1

(g(x, ξn)− g(x))2. (7)

By using g(x) and s2(x), Chebyshev inequality
from samples [13] is stated as

Pr

(
|g(x, ξ)− g(x)| ≥ λ

√
N + 1

N
s(x)

)

≤ 1

N + 1

⌊(N + 1) (N − 1 + λ2)

N λ2

⌋ (8)

where �r	 denotes the floor function of r ∈ �.
The following theorem [14] provides the predic-

tion interval of the stochastic function value g(x, ξ)
which can be calculated from its samples.

Theorem 1 Let g(x, ξn), n = 1, · · · , N be a set of
samples and N ≥ Nmin. From a given probability
α ∈ (0, 1), the minimum sample size is

Nmin =
⌊ 1
α
+ 1

⌋
. (9)

From the probability α ∈ (0, 1) and the sample
size N > Nmin, an coefficient κ is defined as

κ =

√
N2 − 1

N (αN − 1)
. (10)

By using g(x) in (6), s2(x) in (7), and κ in (10),
the prediction interval of g(x, ξ) is estimated as⎡
⎢⎣

Pr([gL(x), gU (x)] 
 g(x, ξ)) ≥ 1− α,

gL(x) = g(x)− κ s(x),

gU (x) = g(x) + κ s(x).

(11)

Proof: From the upper-bound of the floor function,
i.e. its argument, the right-hand side of Chebyshev
inequality in (8) is simplified as

Pr

(
|g(x, ξ)− g(x)| ≥ λ

√
N + 1

N
s(x)

)

≤ N − 1 + λ2

N λ2
.

(12)

Let define a coefficient κ temporarily as

κ = λ

√
N + 1

N
. (13)

Substituting κ in (13) to (12), we have

Pr(|g(x, ξ)− g(x)| ≥ κ s(x))

≤ N2 − 1 +N κ2

N2 κ2
.

(14)

Let describe the probability α as

α =
N2 − 1 +N κ2

N2 κ2
. (15)

From (14) and (15), we can derive the prediction
interval of g(x, ξ) as shown in (11). From (15), we
can redefine κ by using α as shown in (10). From (13),
κ > 1 holds. From (10) and κ > 1, the minimum
sample size Nmin is given by (9). ��
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Figure 1: Change of κ in (10) for N and α

It boils down to this. By using (6), (7), and (10),
the lower-bound gL(x) of g(x, ξ) shown in (11) is
calculated from samples g(x, ξn), n = 1, · · · , N .

Fig. 1 shows the value of coefficient κ in (10) that
depends on both the probability α and the sample size
N [14]. A limiting value of κ is

lim
N→∞

κ = lim
N→∞

√
N2 − 1

N (αN − 1)
=

√
1

α
. (16)

3.2 Problem Formulation
As stated above, CPOP in (3) is transformed into
LPOP. By using the lower-bound gL(x) of g(x, ξ)
provided by Theorem 1, LPOP is formulated as[

max
x∈X

gL(x) = g(x)− κ s(x)

sub. to x1 + x2 + · · ·+ xD = 1
(17)

where we suppose that the sample size N used to cal-
culate gL(x) is larger enough than Nmin in (9).

Theorem 2 If x ∈ X is a feasible solution of LPOP
in (17) then x ∈ X is also a feasible solution of
CPOP in (3) under a condition γ = gL(x).

Proof: Assume that x ∈ X is a feasible solution of
LPOP in (17). Therefore, x ∈ X provides the lower-
bound as shown in (11). Since gL(x) = γ holds,

Pr(g(x, ξ) ≥ γ) = Pr([γ, ∞) 
 g(x, ξ))

≥ Pr([gL(x), gU (x)] 
 g(x, ξ)) ≥ 1− α.
(18)

From (18), the feasible solution of LPOP x ∈ X
satisfies the chance constraint of CPOP in (3). ��

3.3 Generation of Samples
We need samples ξn ∼ N (μ, V ) n = 1, · · · , N to
calculate the lower-bound gL(x) of g(x, ξ) for LPOP.
Therefore, we explain how to generate them. From

Cholesky decomposition [15], the covariance matrix
V in (2) is decomposed into the form

V = BBT (19)

where B is a lower triangular matrix:

B =

⎡
⎢⎢⎢⎣

b11 0 · · · 0
b21 b22 · · · 0

...
...

. . .
...

bD1 bD2 · · · bDD

⎤
⎥⎥⎥⎦ . (20)

From B in (20) and μ = (μ1, · · · , μD) in (1),
each sample ξn = (ξn1 , · · · , ξnD) is generated as

⎡
⎢⎢⎢⎣

ξn1 = μ1 + b11 ε
n
1

ξn2 = μ2 + b21 ε
n
1 + b22 ε

n
2

...

ξnD = μD + bD1 ε
n
1 + · · ·+ bDD εnD

(21)

where εni ∼ N (0, 1), i = 1, · · · , D are mutually
independent random variables following the standard
normal distribution.

4 Optimization Algorithm
In order to obtain the solution of LPOP defined by
(17), we employ a basic DE [11]. That is because DE
is arguably one of the most powerful stochastic real-
parameter optimization algorithms in current use [16].
We describe the procedure of DE for LPOP.

4.1 Initialization
DE holds NP individuals in the population P . The
k-th individual vk ∈ P ⊆ [0, 1]D, k = 1, · · · , NP is
a D-dimensional real vector represented as

vk = (v1,k, · · · , vi,k, · · · , vD,k) (22)

where vi,k ∈ � and 0 ≤ vi,k ≤ 1, i = 1, · · · , D.
The initial population P is generated randomly.

Then each of the individuals vk ∈ P is transformed
in a solution x = (x1, · · · , xD) ∈ X of LPOP as

xi =
vi,k

v1,k + · · ·+ vD,k
, i = 1, · · · , D. (23)

Consequently, the equality constraint in (17),
namely x1 + · · ·+ xD = 1, is always satisfied.

The solution x ∈ X is evaluated N times such
as g(x, ξn), n = 1, · · · , N . From the set of sam-
ples, the objective function value of LPOP, namely the
lower-bound gL(x), is calculated as stated above.
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4.2 Strategy of DE
In order to generate a candidate for a new vk ∈ P ,
DE uses a basic strategy named “DE/rand/1/bin” [11].
The performance of the strategy usually depends on
the values of the control parameters, namely the scale
factor SF ∈ (0, 1] and the crossover rate CR ∈ [0, 1],
which are given by users in advance. Due to avoid
a strong dependency on the control parameters, a
self-adaptive setting of them is employed. The self-
adaptive setting is detailed in the literature [17].

Each of the individuals vk ∈ P is assigned to
“target vector” in turn. Except for the target vector,
three other distinct individuals, say vk1, vk2, and vk3,
k �= k1 �= k2 �= k3, are selected randomly from
P . From the three individuals, the differential muta-
tion generates a new vector z = (z1, · · · , zD) ∈ �D

called “mutated vector” as

z = vk1 + SF (vk2 − vk3). (24)

The binomial crossover [11] between the mutated
vector z ∈ �D in (24) and the target vector vk ∈ P
generates a candidate for a new individual u ∈ �D

called “trial vector”. Each component ui ∈ � of the
trial vector u = (u1, · · · , uD) ∈ �D is inherited
from either z ∈ �D or vk ∈ P as

ui =

{
zi; if randi ≤ CR ∨ i = ir

vi,k; otherwise
(25)

where randi ∈ [0, 1] denotes a uniformly distributed
random value. The subscript ir ∈ [1, D] is also
selected randomly, which ensures that the newborn
u ∈ �D differs from the existing vk ∈ P .

If a component ui ∈ � of the trial vector u ∈ �D

is made out of the range [0, 1] as a result of the above
strategy, it is returned to the range [0, 1] as

ui =

{
vi,k1 + randi (0− vi,k1); if ui < 0

vi,k1 + randi (1− vi,k1); if ui > 1
(26)

where vk1 ∈ P has been used in (24) too [11].

4.3 Survival Selection
The trial vector u ∈ �D is transformed into a solution
of LPOP as shown in (23). The new solution is also
evaluated N times to get the samples of its function
value. Then the objective function value is calculated
for the solution. The trial vector u ∈ �D is compared
with the target vector vk ∈ P in their objective func-
tion values. As a result, if u ∈ �D is not worse than
vk ∈ P , vk ∈ P is replaced by u ∈ �D immediately.
Otherwise, the trial vector u ∈ �D is discarded.

Algorithm 1 : DE for LPOP

1: P := GENERATE INITIAL POPULATION(NP );
2: ∀vk ∈ P : Evaluate gL(τ(vk));
3: repeat
4: for k := 1 to NP do
5: u := STRATEGY(vk, P );
6: Evaluate gL(τ(u));
7: if gL(τ(u)) ≥ gL(τ(vk)) then
8: vk := u; /* vk ∈ P */

9: end if
10: end for
11: until a termination condition is satisfied;

12: x� := SELECT BEST FEASIBLE(P );

Algorithm 1 provides the pseudo-code of DE for
LPOP. The function τ : [0, 1]D → X means that an
individual vk ∈ [0, 1]D is transformed into a solution
x ∈ X of LPOP as shown in (23). The best feasible
solution x� ∈ X of LPOP is returned in the end.

5 Numerical Experiment
5.1 Example of CPOP
We consider an example of CPOP in which the ratios
of four assets xi, i = 1, · · · , 4 are optimized under a
probability α ∈ (0, 1). The mean vector μ ∈ �4 and
the covariance matrix V in (1) are given as

μ = (0.05, 0.10, 0.15, 0.20),

V =

⎡
⎢⎣

0.0004 −0.0006 0.0001 −0.0006
−0.0006 0.0016 −0.0012 0.0006
0.0001 −0.0012 0.0036 −0.0014

−0.0006 0.0006 −0.0014 0.0064

⎤
⎥⎦ .

5.2 Example of LPOP
We transform the above CPOP into LPOP. From
Fig. 1, the sample size is chosen as N = 80. As a
result of the Cholesky decomposition of V , the lower
triangle matrix B in (20) is obtained as

B =

⎡
⎢⎣

0.0200 0.0000 0.0000 0.0000
−0.0280 0.0286 0.0000 0.0000
0.0060 −0.0361 0.0475 0.0000

−0.0320 −0.0090 −0.0331 0.0648

⎤
⎥⎦ .

5.3 Experimental Setup
The proposed DE for LPOP was coded by the Java
language. As the termination condition of DE, the
maximum number of generation was fixed to 200. The
population size was chosen as NP = 20. Thereby, we
applied DE to an instance of LPOP 30 times.
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Table 1: Objective function value of LPOP

α MAX AVE VAR

0.05 0.0681 0.0652 0.0011
0.10 0.0859 0.0817 0.0019
0.15 0.1034 0.0962 0.0023
0.20 0.1153 0.1071 0.0025
0.25 0.1193 0.1145 0.0025
0.30 0.1262 0.1212 0.0023

Table 2: The best solution of LPOP
α x1 x2 x3 x4

0.05 0.4449 0.2587 0.1791 0.1171
0.10 0.1782 0.2909 0.3319 0.1988
0.15 0.0364 0.2712 0.3664 0.3257
0.20 0.0043 0.1482 0.4388 0.4085
0.25 0.0019 0.0990 0.5058 0.3930
0.30 0.0070 0.1321 0.4189 0.4419

5.4 Experimental Result
Several risks α ∈ (0, 1) were given for the example of
CPOP. As stated above, each CPOP was transformed
into an instance of LPOP. Table 1 shows the result of
experiment. The maximum (MAX), average (AVE),
and variance (VAR) of the objective function values
of LPOP achieved by the solutions obtained by DE
are shown in Table 1. From the results in Table 1, we
can confirm the robustness of DE for LPOP.

Fig. 2 shows the change of the total return γ of
CPOP for the risk α which is provided by the best
solutions of LPOP shown in Table 1. From Fig. 2, it
is observed that the total return γ of CPOP increases
in proportion to the amount of risk α.

Table 2 shows the best solution x� ∈ P obtained
by DE for the respective α values. From the result
in Table 2, the best solution depends on the risk α.
Fig. 3 illustrates the ratios of assets composing the
best solutions of LPOP shown in Table 2. The values
of x1 and x2 dominate the investment when the risk
is small: α = 0.05. On the other hand, the values of
x3 and x4 dominate the investment when the risk is
large: α = 0.25. Therefore, the former assets might
be safety and the latter assets might be risky.

6 Conclusion
A new approach for solving CPOP without using the
Monte Carlo simulation was proposed. By using the
lower-bound of stochastic function value, which were
derived from Chebyshev inequality [13], CPOP was
transformed into LPOP. Besides, it was proved that the
feasible solution of LPOP is also feasible for CPOP.

Figure 2: Change of return γ for risk α

(a) Risk: α = 0.05

(b) Risk: α = 0.15

(c) Risk: α = 0.25

Figure 3: The best solution x� ∈ �4 for risk α
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Then, in order to solve LPOP, a basic DE was used.
Through the numerical experiment on a test problem,
we could confirm that the total return of CPOP was
increased in proportion to the amount of risk α.

In the future work, we reduce the computational
burden of the proposed approach. For solving LPOP
with the basic DE, every individual has to be evaluated
N times. Compared with the primitive Monte Carlo
simulation, the sample size N is relatively small.
However, the multiple sampling of every individual is
still expensive. Therefore, we need to introduce some
sample-saving techniques [10, 14] into the basic DE.
Furthermore, we would like to evaluate the proposed
approach on practical portfolio optimization problems
which contain a large number of assets [18].
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and V. Z̆umer: Self-adapting control param-
eters in differential evolution: a comparative
study on numerical benchmark problems, IEEE
Trans. on Evolutionary Computation, 10(6),
2006, pp. 646–657.

[18] M. Hirschberger, Y. Qi, and R. E. Steuer: Ran-
domly generating portfolio-selection covariance
matrices with specified distributional character-
istics, European Journal of Operational Re-
search, 117, 2007, pp. 1610–1625.

Kiyoharu Tagawa
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 71 Volume 2, 2017




