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Abstract: This work is devoted to the further investigation of splines of the fifth order approximation. Here we
present some new formulae which are useful for the approximation of functions with one or two variables. For
each grid interval (or elementary rectangular) we construct the approximation separately. Here we construct the
basic one-dimensional polynomial splines of the fifth order approximation when the values of the function and the
values of its first derivative are known in each point of interpolation. Sometimes it is important that the integrals of
the function over the intervals are equal to the integrals of the approximation of the function over the intervals. In
that case the approximation has some physical parallel. For this aim we use quadratic formulae here with the sixth
order of approximation instead of the value of integral. The one-dimensional case can be extended to multiple
dimensions through the use of tensor product spline constructs. Numerical examples are represented.
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1 Introduction

The idea of the spline interpolation was born in Eng-
land at the end of the 19th century when British en-
gineers designed the first railroad tracks. The spline
interpolation was then considered as a more appropri-
ate alternative to polynomial interpolation. Now there
are a variety of different types of splines that are used
for solving different mathematical, mechanical, phys-
ical and engineering problems.

This method of approximation using polynomial
splines is widely used for the interpolation and ap-
proximation of discrete data. A lot of research has
been devoted to the application of various splines with
different properties for approximation and estimation
of data. Special attention is given to methods of con-
structing images [1–10].

As is well known, the one-dimensional case can
be extended to multiple dimensions through the use of
tensor product spline constructs [11–13].

Suppose that n is a natural number, while a, b are
real numbers, h = (b− a)/n. Let us build the grid of
interpolation nodes xj = a+ jh, j = 0, 1, . . . , n.

2 Left polynomial splines of one vari-
able

Let the function u(x) be such that u ∈ C5([a, b]).
Suppose that we know u(xj), u′(xj), j =

0, 1, . . . , n. The next quadratic formula is well

known: ∫ xj+1

xj−1

u(x)dx = Vj(u) +O(h6),

where

Vj(u) =
(xj+1 − xj−1)

30
(7u(xj−1) + 7u(xj+1)+

16u(xj))−
(xj+1 − xj−1)

2

60
(u′(xj+1)− u′(xj−1)).

We denote by ũ(x) an approximation of the function
u(x) on the interval [xj , xj+1] ⊂ [a, b]:

ũ(x) = u(xj)ωj,0(x) + u(xj+1)ωj+1,0(x)+

+u′(xj)ωj,1(x) + u′(xj+1)ωj+1,1(x)+

+Vj(u)ω
<0>
j (x). (1)

The basic splines ωj,0(x), ωj+1,0(x), ωj,1(x),
ωj+1,1(x), ω<0>

j (x), we obtain from the system:

ũ(x) ≡ u(x), u(x) = xi−1, i = 1, 2, 3, 4, 5. (2)

Suppose that suppωk,α = [xk−1, xk+1], α = 0, 1,
suppω<0>

k = [xk, xk+1]. It is easy to see that
ωk,0, ωk,1, ω

<0>
k ∈ C1(R1). We have for x = xj+th,

t ∈ [0, 1] the next formulae:

ωj,0(xj + th)=(2t+ 1)(t− 1)2, (3)

ωj+1,0(xj + th)=− (1/8)t2(15t2 − 14t− 9), (4)

I. G. Burova, O. V. Rodnikova
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 384 Volume 1, 2016



ωj,1(xj + th)=(1/4)th(5t+ 4)(t− 1)2, (5)

ωj+1,1(xj + th)=(1/8)ht2(5t+ 3)(t− 1), (6)

ω<0>
j (xj + th)=(15/16)t2(t− 1)2/h. (7)

Figures 1, 2, 3 show the graphics of the ba-
sic functions ωj,0(x), ωj+1,0(x), ωj,1(x), ωj+1,1(x),
ω<0>
j (x), when h = 1. Figure 3 (right) shows the

error of approximation of the Runge function u(x) =
1/(1 + 25x2) with the polynomial splines, h = 0.1,
x ∈ [−1, 1].
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Figure 1: Plots of the basic functions: ωj,0(x) (left),
ωj+1,0(x) (right)
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Figure 2: Plots of the basic functions: ωj,1(x), when
h = 1(left), ωj+1,1(x), when h = 1 (right)

0

0.01

0.02

0.03

0.04

0.05

0.2 0.4 0.6 0.8 1
t

–0.001

–0.0005

0

0.0005

0.001

–1 –0.5 0.5 1

Figure 3: Plots of the basic functions: ω<0>
j (x), when

h = 1 (left), and the error of approximation of the
Runge function with the polynomial splines, h = 0.1,

x ∈ [−1, 1] (right)

Let us take Ũ(x), x ∈ [a, b], such that Ũ(x) =
u(x), x ∈ [xj , xj+1]. Let ∥u∥[a,b] = max

[a,b]
|u(x)|.

Theorem 1. Let function u(x) be such that u ∈
C5([a, b]). For approximation u(x), x ∈ [xj , xj+1] by
(1), (3) – (7) we have:

|ũ(x)− u(x)|[xj ,xj+1] ≤ K1h
5∥u(5)∥[xj−1,xj+1], (8)

K1 = 0.0225.

|ũ′(x)− u′(x)|[xj ,xj+1] ≤ K2h
4∥u(5)∥[xj−1,xj+1],

(9)
K2 = 0.0994.

|ũ(x)− u(x)|[a+h,b] ≤ K1h
5∥u(5)∥[a,b]. (10)

Proof. Inequality (8) follows from Taylor’s theo-
rem and the inequalities:

|ωj,0(x)| ≤ 1, |ωj+1,0(x)| ≤ 1,
|ωj,1(x)| ≤ 0.216h, |ωj+1,1(x)| ≤ 0.1198h,
|ω<0>

j (x)| ≤ 0.0586/h.
Inequality (10) follows from (8).

We have the next expressions for derivatives of
basic functions:

ω′
j,0(xj + th) = 6t(t− 1)/h,

ω′
j+1,0(xj + th) = −(3/4)t(−7t− 3 + 10t2)/h,

ω′<0>
j (xj + th) = (15/8)t(1 + 2t2 − 3t)/h2,

ω′
j,1(xj + th) = −(3/2)t− (9/2)t2 + 5t3 + 1,

ω′
j+1,1(xj + th) = −(3/4)t− (3/4)t2+(5/2)t3.

Inequality (9) follows from Taylor’s theorem and the
inequalities:

|ω′
j,0(x)| ≤ 1.5/h, |ω′

j+1,0(x)| ≤ 1.626/h,
|ω′

j,1(x)| ≤ 1, |ω′
j+1,1(x)| ≤ 1,

|ω′<0>
j (x)| ≤ 0.181/h2.

Theorem 2. Let function u(x) be such that u ∈
C5([a, b]). We have:∫ xj+1

xj

(ũ(x)− u(x)) ≤ 0.0081h6∥u(5)∥[xj−1,xj+1].

The proof is obvious and it is similar to what it
was in Theorem 1.

3 Compering with the Hermit inter-
polation

Here we shall compare the approximation that has
been constructed above and the Hermite approxima-
tion:

ũH(x) = u(xj−1)ωj−1,0(x) + u(xj)ωj,0(x)

+u(xj+1)ωj+1,0(x) + u′(xj)ωj,1(x)+

u′(xj+1)ωj+1,1(x), x ∈ [xj , xj+1].

The basic splines ωj−1,0(x), ωj,0(x), ωj+1,0(x),
ωj,1(x), ωj+1,1(x) we obtain from the system:

ũH(x) ≡ u(x), u(x) = xi−1, i = 1, 2, 3, 4, 5. (11)
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Suppose that suppωk,0 = [xk−1, xk+2], suppωk,1 =
[xk−1, xk+1]. It is easy to see that ωk,0, ωs,1,∈
C1(R1), k = j − 1, j, j + 1, s = j, j + 1.

We have for x = xj + th, t ∈ [0, 1], the next
formulae:

ωj,0(xj + th)=(−1 + t)2(t+ 1)2, (12)

ωj+1,0(xj + th)=− (1/4)t2(t+ 1)(5t− 7), (13)

ωj,1(xj + th)=th(t+ 1)(−1 + t)2, (14)

ωj+1,1(xj + th)=(1/2)ht2(−1 + t)(t+ 1), (15)

ωj−1,0(xj + th)=(1/4)t2(−1 + t)2. (16)

Table 1 shows the errors RI = max
x∈[a,b]

|ũ − u|,

RII = max
x∈[a,b]

|ũH−u| when [a, b] = [−1, 1], h = 0.1.

Calculations were done in Maple, Digits=15.
Table 1.

u(x) RI RII

x4 0.0 0.0
1/((1 + 25x2) 0.1417e− 2 0.1531e− 2
sin(5x)− cos(5x) 0.2913e− 4 0.3466e− 4

4 About approximations with two
variables

Suppose that n,m are natural numbers, while a, b, c,
d are real numbers, hx = (b−a)/n, hy = (d− c)/m.
Let us build the grid of interpolation nodes xj = a +
jhx, j = 0, 1, . . . , n, yk = c+ khy, k = 0, 1, . . . ,m.
On every line parallel to axis y, we can construct the
approximation in the form:

ũ(y) = u(yk)ωk,0(y) + u(yk+1)ωk+1,0(y)+

u′(yk)ωk,1(y) + u′(yk+1)ωk+1,1(y)+

+Vk ω
<0>
k (y), y ∈ [yk, yk+1]. (17)

Now the formulae for ωk,0(y), ωk+1,0(y), ωk,1(y),
ωk+1,1(y), ω<0>

k (y) are similar to the previous ones.
If (x, y) ∈ Ωj,k then we get the next expression

using the tensor product:

ũ(x, y) =

1∑
i=0

1∑
p=0

u(xj+i, yk+p)ωj+i,0(x)ωk+p,0(y)+

1∑
i=0

1∑
p=0

u′y(xj+i, yk+p)ωj+i,0(x)ωk+p,1(y)+

1∑
i=0

Vj+i,k(x)ωj+i,0(x)ω
<0>
k (y)+

1∑
i=0

Vj,k+iω
<0>
j (x)ωk+i,0(y)+

1∑
i=0

Sj,k+iω
<0>
j (x)ωk+i,1(y)+

Wj,kω
<0>
k (y)ω<0>

j (x)+

1∑
i=0

u′x(xj , yk+i)dtωj,0(x)ωk+i,0(y)+

+

1∑
i=0

u′′xy(xj , yk+i)dtωj,0(x)ωk+i,1(y)+

1∑
i=0

Pj+i,kωj+i,1(x)ω
<0>
k (y), (18)

where

Vj+i,k =
(yk+1 − yk−1)

30
(7u(xj+i, yk−1)+

7u(xj+i, yk+1) + 16u(xj+i, yk))−

(yk+1 − yk−1)
2

60
(u′y(xj+i, yk+1)− u′y(xj+i, yk−1)),

Vj,k+i =
(xj+1 − xj−1)

30
(7u(xj−1, yk+i)+

7u(xj+1, yk+i) + 16u(xj , yk+i))−

(xj+1 − xj−1)
2

60
(u′x(xj+1, yk+i)− u′x(xj−1, yk+i)),

Sj,k+i =
(xj+1 − xj−1)

30
(7u′y(xj−1, yk+i)+

7u′y(xj+1, yk+i) + 16uy(xj , yk+i))−

(xj+1 − xj−1)
2

60
(u′′xy(xj+1, yk+i)−u′′xy(xj−1, yk+i)),

Pj+i,k =
(yk+1 − yk−1)

30
(7u′x(xj+i, yk−1)+

7u′x(xj+i, yk+1) + 16u′x(xj+i, yk))−

(yk+1 − yk−1)
2

60
(u′′yx(xj+i, yk+1)−u′′yx(xj+i, yk−1)),

Wjk =
(yk+1 − yk−1)

30
(7G(xj , yk−1)+

7G(xj , yk+1) + 16G(xj , yk))−

(yk+1 − yk−1)
2

60
(G′y(xj , yk+1)−G′y(xj , yk−1)),

G(xj , y) =
(xj+1 − xj−1)

30
(7u(xj−1, y)+
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7u(xj+1, y) + 16u(xj , y))−

(xj+1 − xj−1)
2

60
(u′x(xj+1, y)− u′x(xj−1, y)).

Graphs 4, 5 shows approximations and the errors
of approximations ũ(x, y) − u(x, y) by (18), (3)–
(7), (12)–(16) of functions u1(x, y) = sin(3x −
3y) cos(3x− 3y), u2(x, y) = (x− y)2(x+ y)2, when
[a, b] = [−1, 1], [c, d] = [−1, 1], hx = hy = h = 0.2.
Calculations were done in Maple, Digits=15.
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Figure 4: Plots of the functions: ũ(x, y) = sin(3x −
3y) cos(3x − 3y) (left) and ũ(x, y) − u(x, y) (right)

when h = 0.2, [−1, 1]× [−1, 1]

–1–0.500.51

–1
–0.5

0

0

0.2

0.4

0.6

0.8

1

–1–0.500.51

–1
–0.5

0

–1.5e–15

–1e–15

–5e–16

0

5e–16

1e–15

1.5e–15

Figure 5: Plots of the functions: ũ(x, y) = (x −
y)2(x + y)2 (left) and ũ(x, y) − u(x, y) (right) when

h = 0.2, [−1, 1]× [−1, 1]

5 Conclusion

Basic spines can be applied for solving various math-
ematical problems. We can obtain the formulae of
our basic splines in the following way. In the interval
[xj−1, xj ] we obtain basic splines from the system:

ũ(x) ≡ u(x), u(x) = xi−1, i = 1, 2, 3, 4, 5,

where

ũ(x) = u(xj−1)ωj−1,0(x) + u(xj)ωj,0(x)+

u′(xj−1)ωj−1,1(x) + u′(xj)ωj,1(x)+Vj−1 ω
<0>
j−1 (x).

If we take the basic splines with the same numbers
from [xj−1, xj ] and [xj , xj+1] then we have:

ωj,0(xj+th)=


−15

8 t
4 − 23

4 t
3 − 39

8 t
2 + 1, t ∈ [−1, 0],

2t3 − 3t2 + 1, t ∈ [0, 1],

0, t /∈ [−1, 1],

ωj,1(xj+th)=


5h
8 t4 + 9h

4 t3 + 21h
8 t2 + th,

t ∈ [−1, 0],
5h
4 t4 − 3h

2 t3 − 3h
4 t2 + th, t ∈ [0, 1],

0, t /∈ [−1, 1],

ω<0>
j (xj + th)=


15
16h t

2(t− 1)2,

t ∈ [0, 1]

0, t /∈ [0, 1].

Figure 6 shows the plots of the basic splines ωj,0, ωj,1.
The plot of the basic spline ω<0>

j is shown in Figure 3.
The construction of the nonpolynomial splines

with the same properties and their application for the
solving of different problems will be regarded in fur-
ther papers.
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Figure 6: Plots of the basic functions: ωj,0(jh + th)
(left), and ωj,1(jh+ th), when h = 1 (right)
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