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Abstract: This work focuses on the novel approach which is named as “Seperate Node Ascending Derivatives
(SNADE)”. SNADE is a very recently developed univariate function representation. This method has a similar
structure to the Taylor series expansion. Two specific cases related recurrent nodes with reference to certain rules
are handled in this paper.
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1 Introduction

Univariate functions are represented in various differ-
ent ways and each representation can be appropriately
used for approximation via its finite number of or-
dered terms from the first component, that is, trun-
cations. Among the representations we can mention
Taylor series which is at most essential position. The
series over orthogonal polynomials or functions are
also quite important agents. We do not intend to men-
tion other existing methods. This work is tightly re-
lated to Taylor series. Hence the next section is or-
ganised to revisit Taylor series. The remaining sec-
tions will focus on the many important and even di-
verse properties of the novel approach SNADE which
has infinite number of possibilities in its design [1–6].
The basic issue is the distribution of the nodal points.
In this work we consider just two nodel values (x1 and
x2) such that ordering of the infinite number of nodes
start with say m1 number of x1 followed by say m2

number of x2. Then this ordering structure periodi-
cally continues to appear.

2 Revisiting Taylor series

Even though the Taylor series is considered for real
valued univariate functions because of historical and
practicality reason it is in fact defined in a more gen-
eral way involving the complex variables and complex
planes [7–19]. If we consider a complex-valued func-
tion f(z) where z stands for the complex valued in-
dependent variable. Then the Taylor expansion of the

function f(z) can be given as follows

f(z) =
∞∑
j=0

fj (z − z0)j (1)

where z0, denoting a complex value, is called “Ex-
pansion Point” since it represents a location (point) in
the complex plane of the independent variable z. This
is an infinite linear combination of the (z − z0)j pow-
ers with linear combination coefficients fjs. (z − z0)j
power functions with natural number js are all lin-
early independent. They can be considered as the el-
ements of a denumerable infinite elements of a set we
call “basis set”. The linear combination coefficients
which are also called “Taylor Series Coefficients” are
explicitly defined below

fj ≡
1

j!

djf

dzj
(z0) (2)

which implies that all derivatives of the function at the
expansion point of the z-complex plane must exist and
have unique values. This can rather comfortably ac-
cepted in the case of real entities and the exiectence
of each order derivative becomes separately impor-
tant. On the other hand, In the complex plane, the
differentiability-once is a sufficient condition for the
all derivatives of the univariate function under con-
sideration. This is because the first derivative is de-
fined through a limit when a deviation from the ex-
pansion point diminishes to zero without depending
on the approaching ditection to the limit point (ex-
pansion point). Therefore all approcahing directions
must give the same unique values as the derivative of
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the function under consideration. The differentiablity
is provided as long as the Cauchy-Remain equations
over the partial derivatives with respect to real and
imaginary parts of the independent variable are sat-
isfied. If this happens then it is possible to prove that
all order derivatives with respect to complex variable
exists and have unique values. Then the function can
be called analytic at the expansion point.

Any point in the complex plane of the indepen-
dent variable is called “singularity” if the function is
not differentiable at that point. Most basic singular-
ity is the pole where the function and its derivatives
become plus or minus infinite.

The second type singularity is the branch point
which is the resource of the multivaluedness. To get
the uniqueness the complex plane is cut and is consid-
ered together with one or more than one adjacent com-
plex planes which are called Riemann sheet(s). To get
uniqueness it is important to proceed through a path
which do not intersects the cut. If done so, then the
walking through the path is completed in a rotation
with an angle which is multiples of 2π. The multi-
plicity determines the number of necessary Riemann
sheets to get uniqueness. All power functions with ra-
tional valued powers have finite number of Riemann
sheets while the infinite number of Riemann sheets
are encountered in the case of transcendental func-
tions like logarthm.

In the case of essential singularities the Taylor se-
ries all coefficients become infinite or identically zero
by creating a strong contradiction.

Taylor series expansion is also based on a repeti-
tive use of an identity related to the integral of deriva-
tive identity. If done so then a polynomial sum (Tay-
lor polynomial) and a remainder term is obtained. The
infinite degree limit of Taylor polynomial defines Tay-
lor series as long as the remainder term, which is re-
sponsible for the convergence of the series, tends to
vanish as long as the degree of the Taylor polynomial
increases unboundedly.

The above analysis has been for determining the
formal existence of the Taylor series. However, this
formal existence may not mean that they can be used
in the function calculations. For the function evalu-
ations, the convergence of the Taylor series gains a
lot of importance. For convergence analysis the most
helpful tools are found again in complex analysis. To
this ends the very well-known and useful definition
is the Cauchy contour integral which is defined for a
function f(z) as follows

f(z) =
1

2πi

∮
C
dζ

f(ζ)

ζ − z
(3)

where i stands for the imaginary unit number while
the symbolC defines a counterclockwise circular con-

tour centered at the point where ζ = z in ζ com-
plex plan [20–24]. In this formula, the target function
f(z) is assumed not to have any singularity in the disk
whose circle is C.

Cauchy contour integral formula can be differen-
tiate with respect to the independent variable z with-
out destroying the validity. This procedure enables us
to evaluate all derivatives of the target function f(z).
The nth order derivative contour integral formula can
be given as follows

f (n)(z) =
n!

2πi

∮
C
dζ

f(ζ)

ζ − z

n+1

(4)

(5) can be used to get a bound for the complex
derivatives of the function f(z) as we can write the
following inequality without giving the intermediate
stages

∣∣∣f (n)(z)∣∣∣ ≤ n!Bf
ρn

, n = 0, 1, 2, ... (5)

where ρ stands for the radius of the circular contour
and Bf characterizes the bound of the function on the
contour. The validity of this formula requires the non-
singularity on the contour. All these can be used to
prove that the Taylor series of a function f(z) con-
verges to the point which is closest to the expansion
point. We do not intend to enter further details of the
singularity issues even though they are quite impor-
tant.

3 Recalling SNADE

SNADE can be considered as a new Taylor expan-
sion involving denumerable infinitely many nodes. To
formulate the SNADE, identity on the integral of the
derivative of a function is used repetitiously but not on
the same interval. Each derivative value is calculated
at a point that can have different value from the other
nodes.

Integral of Derivative Identity for a univariate
function f(x) which is analytic in a closed interval
[a, b] can be written as follows

f(x) = f(x1) +

∫ x

x1
dξf ′(ξ), x, x1 ∈ [a, b] (6)

If f(x) and f ′(ξ) replace with f ′(ξ) and f ′′(ξ1) re-
spectively, this brings following equality

f ′(ξ) = f ′(x2) +

∫ ξ

x2
dξ1f

′′(ξ1) (7)
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SNADE is based on this structure. (6) and (7) can be
merged to give

f(x) = f(x1) + f ′(x2)(x− x1)

+

∫ x

x1
dξ1

∫ ξ1

x2
dξ2f

′′(ξ2) (8)

Taylor series use a single nodal point and all calcula-
tions are performed at this point. On the other hand,
the function value evaluatedat x1 and the value in the
first derivative of function of x2 are used until now
to obtain the novel approach, SNADE. The structure
which is obtained above can be written in symbolic
form as follows

f(x) = f(x1)I01f + f ′(x2)I1(x1)1f
+ f ′′(x2)I2(x1, x2)1f
+ R2(x;x1, x2, x3) (9)

where 1f represents the unit constant function in the
considered interval. I stands for an integral operator
can be defined by

Im(x1, ..., xm)g(x) ≡
∫ x

x1
dξ1...

∫ x

xm
dξmg(ξm),

m = 1, 2, ..., I0g(x) ≡ g(x) (10)

where g(x) is an arbitrary integrable function. m. op-
erator is obtained by m-multiple integration. The re-
mainder term is obtained as follows

Rm(x;x1, ..., xm+1) ≡ Im+1(x1, ..., xm+1)

×f (m+1)(x),m = 0, 1, 2, ... (11)

After these definitions the formula given in (9) can be
generalized in following form

f(x) =
m∑
i=0

f (i)(xi+1)Ii(x1, ..., xi)1f

+ Rm+1(x;x1, ..., xm+1), m = 0, 1, ...(12)

Since remainder term tends to vanish when m grows,
above equation can be written as follows

f(x) =
∞∑
i=0

f (i)(xi+1)Ii(x1, ..., xi)1f (13)

and can be called as “Infinite Order SNADE”.

4 SNADE Basis Functions

The general definition of basis functions can be writ-
ten as follows

φj(x;x1, ..., xj) ≡ Ij(x1, ..., xj)1f ,
j = 0, 1, ... (14)

In the right hand side functions are given through j-
multiple integrations. Based on this identity, first three
SNADE coefficient functions can be obtained as fol-
lows

φ0(x) ≡ 1,

φ1(x) ≡ (x− x1),

φ2(x) ≡ (x− x1)
(
1

2
x+

1

2
x1 − x2

)
(15)

The basis functions provide the following integral re-
cursion

φi(x;x1, ..., xi) =

∫ x

x1
dξ1φi−1(ξ1, x2, ..., xi)

i = 1, 2, ... (16)

The ith derivative of ith coefficient function with re-
spect to x becomes 1.

φ
(i)
i (x;x1, ..., xi) = 1, i = 1, 2, ... (17)

If both sides of (16) is j times differentiated with re-
spect to x then the recursive relation can be obtained
as follows

φ
(j)
i (x;x1, ..., xi) = φ

(j−1)
i−1 (x;x2, ..., xi),

i = 1, 2, 3, ...; j = 1, 2, ..., i (18)

which can be iterated to give

φ
(j)
i

xj ;x1, ..., xi︸ ︷︷ ︸
i

 = φ
(j−1)
i−1

xj ;x2, ..., xi︸ ︷︷ ︸
i−1


= φ

(j−2)
i

xj ;x3, ..., xi︸ ︷︷ ︸
i−2


= φ

(1)
i−1

xj ;xj , ..., xi︸ ︷︷ ︸
i−j+1

 = 0

i = 1, 2, 3, ...; j = 1, 2, ..., i− 1 (19)

5 A Specific SNADE Case: Infinitely
Multiple Node Triplets

In this case we are going to take all the first two nodes
same as x1 and the last one same as x2 at each triplet
nodes. We are going to present only the following
three times indexed basis functions

I3j(x;x1, x2) =
∫ x

x1

dξ1

∫ ξ1

x1

dξ2

∫ ξ2

x2

dξ3I3j−3(ξ3;x1, x2) (20)
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Definitions for integration by parts:

u =

∫ ξ1

x1
dξ2

∫ ξ2

x2
dξ3I3j−3(ξ3;x1, x2),

dv = dξ1 (21)

So the following equations can be written

du = dξ1

∫ ξ1

x2
dξ3I3j−3(ξ3;x1, x2),

v = ξ1 (22)

After abovementioned definitions, first integral can be
rewritten as follows[
I3j(x;x1, x2) = ξ1

∫ ξ1

x1

dξ2

∫ ξ2

x2

dξ3I3j−3(ξ3;x1, x2)

]x
x1

−
∫ x

x1

dξ1ξ1

∫ ξ1

x2

dξ3I3j−3(ξ3;x1, x2) (23)

If we put limits at first term and associate each inte-
gral limits the following equality can be written

I3j(x;x1, x2 = x

∫ x

x1

dξ1

∫ ξ1

x2

dξ2I3j−3(ξ2;x1, x2)

−
∫ x

x1

dξ1ξ1

∫ ξ1

x2

dξ2I3j−3(ξ2;x1, x2)

=

∫ x

x1

dξ1(x− ξ1)
∫ ξ1

x2

dξ2I3j−3(ξ2;x1, x2) (24)

6 Another Specific SNADE Case: In-
finitely Multiple Node Quartets

In this case we are going to take all the first three
nodes same as x1 and the last one same as x2 at each
quartet nodes. We are going to present only the fol-
lowing four times indexed basis functions

I4j(x;x1, x2) =
∫ x

x1

dξ1

∫ ξ1

x1

dξ2

∫ ξ2

x1

dξ3

∫ ξ3

x2

dξ4I4j−4(ξ4;x1, x2) (25)

Definitions for integration by parts:

u =

∫ ξ1

x1
dξ2

∫ ξ2

x1
dξ3

∫ ξ3

x2
dξ4I4j−4(ξ4;x1, x2),

dv = dξ1 (26)

So the following equations can be written

du = dξ1

∫ ξ1

x1
dξ2

∫ ξ2

x2
dξ3I4j−4(ξ3;x1, x2),

v = ξ1 (27)

After abovementioned definitions, first integral can be
rewritten as follows[
I4j(x;x1, x2) = ξ1

∫ ξ1

x1

dξ2

∫ ξ2

x1

dξ3

∫ ξ3

x2

dξ4I4j−4(ξ4;x1, x2)

]x
x1

−
∫ x

x1

dξ1ξ1

∫ ξ1

x1

dξ2

∫ ξ2

x2

dξ3I4j−4(ξ3;x1, x2) (28)

If we put limits at first term and associate each inte-
gral limits the following equality can be written

I4j(x;x1, x2)=x
∫ x

x1

dξ1

∫ ξ1

x1

dξ2

∫ ξ2

x2

dξ3I4j−4(ξ3;x1, x2)

−
∫ x

x1

dξ1ξ1

∫ ξ1

x1

dξ2

∫ ξ2

x2

dξ3I4j−4(ξ4;x1, x2)

=

∫ x

x1

dξ1

∫ ξ1

x1

dξ2

∫ ξ2

x2

dξ3(x− ξ1)I4j−4(ξ3;x1, x2)

=

∫ x

x1

dξ1
(x− ξ1)2

2

∫
x2

dξ2I4j−4 (ξ2, x1, x2)

(29)

This can be generalized as

Imj(x, x1, x2) =
∫ x

x1

dξ1
(x− ξ1)m−2

(m− 2)!

∫ ξ1

x2

dξ2Imj−m (ξ2, x1, x2) (30)

This formula can more extended to the case where
each m1 consecutive x1 is followed by m2 consecu-
tive x2 even though we are not going to give the de-
tails.

7 Concluding Remarks

What we have shown here the images under certain
integral operators of SNADE can be recursively de-
termined each m1-fold plus m2-fold integration can
be replaced by just twofold integral which can also be
further reduced to one-fold integral with an appropri-
ately defined Kernel. Our further works will focus in
the simplification of SNADE in this direction.
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