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Abstract: - The purpose of this study is to estimate the right-censored nonparametric model with kernel 
smoothing method. To consider the censorship, we used Kaplan-Meier estimator proposed by Stute (1993). In 
nonparametric statistics, a kernel smoothing method needs a smoothing parameter which is also called as a 
bandwidth parameter. In this study, we choose the bandwidth parameter by using three selection methods such 
as improved version of Akaike information criterion (AICc), Risk estimation using classical pilots (RECP) and 
Generalized cross-validation(GCV) method, respectively. For this purpose, a Monte-Carlo simulation study is 
performed to illustrate which selection criterion gives the best estimation for different sample sizes and 
censoring levels. 
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1 Introduction and main ideas 
In a simple manner, the concept of the censored data 
represents the incomplete observation data. It can be 
encountered with this term in many working such as 
health and survival analysis. In survival setting we 
can explain the censorship as if lifetime values 
measured from objects or subjects cannot be 
completely observed, then data censored. According 
to this we can obtain only partial information that 
could be considered as a censoring variable.  

Generally, hazard risk methods and parametric 
regression approach are used for estimating 
censored data. Although these methods are very 
popular for censored data, their restrictions and 
assumptions are obstacles for the accuracy of the 
estimation and disadvantage for usage fields. In this 
study, we solve this problem with using 
nonparametric regression model that free from 
assumptions. The mentioned nonparametric 
regression model can be expressed as follows 

( ) , 1i i iY f X i nε= + ≤ ≤ ,  (1) 
where iY ’s are the right-censored response values 
and iX ’s represent the values of the nonparametric 
covariate variable and iε ’s are independent and 
identically distributed random errors with zero mean 
and constant variance 2σ  and (.)f  is a unknown 
smooth regression function.  

As known, nonparametric and semi-parametric 
models are very popular recently. To this respect, 
we focus on the estimate unknown function in 
model (1) with the right-censored variable Y. Note 
that response variable Y is also censored form right 

by censoring variable C but X is observed 
completely.Therefore, instead of observing (X, Y) 
we observe the triplets (X, T, δ). In this case, we 
define a new adjusted response variable which 
includes the minimum values of Y and C. The new 
response observations are   

( )min ,i i iT Y C=  and ( )I , 1i i iY C i nδ = ≤ ≤ ≤  (2) 
where I(.)iδ = is censor indicator variable and it is a 
sign function. If response value is censored, there is 
an incomplete observation and δi = 0, and δi = 1 
otherwise. In order to provide the consistency and 
accuracy of the model (1), we need some 
assumptions for distribution of (X, Y, δ) such that 

 

A1. C is independent from X and Y.  
A2.  P(𝑌𝑌 ≤ 𝐶𝐶|𝑌𝑌,𝑋𝑋) =  P(𝑌𝑌 ≤ 𝐶𝐶|𝑌𝑌) 

 

Also, assume that Y and C independent and non-
negative variables and they have unknown 
distribution functions F and G, respectively. In here, 
A1 is the known censorship assumption when we 
use Kaplan Meier (1958) estimator. A2 means that, 
given the lifetime, whether there is a censorship or 
not, covariate variable do not ensure any more 
information.   

We see many studies in literature about 
estimation of nonparametric model with kernel 
smoothing. Examples of this work include Wand et. 
al., (1984), Hardle (1990), Green and Silverman 
(1994), Stute (1993), and Hardle et. al., (1997). 
Also, a number of authors consider the kernel 
smoothing for estimating the nonparametric 
function based on censored data. For example, 
Kaplan and Meier’s (1958) product limit method is 
the most commonly used technique for estimating 
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the survival function. Koul et. al. (1981) proposed 
the synthetic data generation for estimation of right-
censored data. Leurgans (1987) studied random 
censoring and synthetic data for linear models. 
Zheng (1984) made a dissertation about regression 
with censored data, Recently, empirical likelihood 
semiparametric random censorship models are 
discussed by Wang and Li (2002). 

This paper is organized as follows. Section 2 
introduces the computations of kernel smoothing 
estimation within right-censored data. Bandwidth 
selection methods are given in section 3. A 
simulation study is carried out to compare the 
selection methods in section 5 and conclusions are 
discussed in section 5. 
 

2 Kernel Smoothing Method 
 In this study, we propose a kernel smoothing 
method to fit model (1) when the dependent variable 
Y  is at risk of being censored. For this reason, the 
traditional kernel smoothing method for estimating 

(.)f  can not be applied directly here. To overcome 
this problem we considered the new response 
observations in (2). Also, we transformed the right-
censored variable “T” into synthetic variable “𝑇𝑇𝐺𝐺�” 
(see Koul et. al.,1981). In practice, because of the 
values T are censored observations, the censoring 
distribution G is usually unknown. In order to solve 
this problem Koul et al. (1981) proposed to replace 
G by its the Kaplan-Meier estimator:   

( ) ( )I[ , 0]

1

ˆ ( ) 1 , ( 0)
1

i it tn

i

n iG t t
n i

δ≤ =

=

− = − ≥ − + 
∏     (3) 

 where (1) ( )... nt t≤ ≤  are ordered observations of T, 

and (1) ( ).... nδ δ≤ ≤  are the corresponding censoring 
indicators observations (censored and uncensored 
lifetimes), which is the concomitant associated with 
T. Using the equation (3) the synthetic response 
variable can be obtained as 

( ) ( )ˆ
ˆ1 ( ) , 1,2,...,i i iiG

T T G T i n= δ − =    (4) 

From this synthetic data, the model (1) can be 
rewritten as  

( ) ( )( ){ }ˆ 1 ... nG
f x f x= + + +T f = ε  (5) 

where Ĝ −T fε = . Conceptually, as n →∞ , 

( ) 0Ε ≅ε . This information will help us to define 
estimates for the function in (5). Then, kernel 
smoothing is can be used as a nonparametric 
approcah to get a proper estimate of the (.)f  in (2).  

The kernel smoothing is one of the most widely 
used methods, which considers a weighted average 
of the data. Let ˆîGT  be a kernel smoother estimate of 

the ith response observation. Then, a kernel 
smoother is defined as follows 

ˆ
1

ˆ
n

ij jiG
j

T w t
=

=∑    (6) 

where jt 's are elements of the synthetic response 
variable ˆiGT , and ijw ’s are known as kernel weights 
given by Nadaraya-Watson (1964). The specific 
weights for the kernel smoothing is expressed as  

( ) ( )
1

/
nj j

ij
j

x x x x
w K K K u K u

h h=

− −   
= =∑ ∑   

   
 

where h  is a bandwidth parameter, and 1ijw =∑ . 

The function ( )K u  determines the shape of the 
regression curves, while the parameter h  determines 
their width.This approach is a called kernel 
smoothing because of a kernel function, K, to 
determine the weights. These kernel functions have 
the following properties: ( ) 0K u ≥  for all u , 

( ) ( )K u K u= −  and ( ) 1K u du =∫ . For example, 
Gaussian kernel function, 

21 1( ) exp( ), [ , ]
22GK u u u

π
= − ∈ −∞ +∞  

and other alternative kernel functions provide the 
properties of the kernel weight function, ( )K u . 

The kernel smoother (6) is also can be rewritten 
as in matrix form 

ˆ ˆ
ˆˆ

h hG G
= =T W T f    (7) 

where h ijw  W =  is a kernel smoother matrix 

based on  parameter h . As in expressed before, the 
most important issue in this study is to select the 
bandwidth parameter. For this purpose, it is 
considered the most widely used three selection 
criteria, given in the next section 
 

3 Bandwidth Selection Methods 
Our task is to select an optimum value of the h .The 
optimum h  is defined as the smoothing parameter 
which minimizes the average of the mean square 
errors (AMSE), given by 

( ) ( )
2

2 21AMSE h htr
n n

h εσ( ) = +I - W T W   (8) 

where hW  is given in equation (7). The estimator of 
the error variance 2

εσ  is described as follows: 

( ) ( )22 1ˆ hn n pσ −= − −I W T   (9) 
where (n-p) is the degrees of freedom for residuals. 
Also note that 2σ̂  is equal to mean square error 
(MSE) of the model. In this study, we used the MSE 
to measure the quality of estimated curves. 
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Improved Akaike Criterion (AICc): This criterion 
is described by Hurvich et. al. (1998): 

( )( )
( )( ) ( )

2
1 log I

2 1 2

c h

h h

AIC n

tr n tr

= + −

 + + − − 

W T

W W
           (10) 

Generalized Cross-Validation Method (GCV): The 
GCV is defined by Craven and Wahba (1979): 

( ) ( ) 221 1GCV h hn - n tr− − = − I H T I H    (11) 

Risk Estimation using Classical Pilots (RECP): 
The RECP  score is expressed as  

( ){ }p p

2
21 ˆ ˆRECP  = ( )h h h h htr

n
σ ′− +W I f W W     (12) 

where 
p

2ˆhσ  and 
p

ˆ
hf  are the appropriate pilot 

estimates for 2σ̂  and f̂ , respectively (Lee (2001) 
and Lee & Solo (1999)). 

4 Simulation Experiment 
This section reports a simulation experiment that 
evaluates the selection criteria given in Section 3. 
To see the performance of the small, medium and 
large samples of each criteria, we use three 
censoring levels (CLs), 15%, 35%, and 50% and 
three samples sizes with n  = 50, 100, and 200. The 
number of replication was 1000 for each of the 
samples. The response observations are obtained by   

( )i i iT f x ε= + , 1 i n≤ ≤   where ( )2~ 0, 1i Nε σ = ,  

( )( ) ( )( )2 2( ) 0.3exp 0.64 0.25 0.7exp 256 0.75i i if x x x= − − + − −

and ( )0.5ix i n= − . Furthermore, we used the 
values of mean square error (MSE) to evaluate the 
quality of any curve estimate ˆ( )λf :  

{ }
n 2

i i
i =1

1 ˆ( ) ( ) , 1 1000
1000 hMSE f x f x i= − ≤ ≤∑    (13) 

The simulation experiment results are summarized 
in the following Table 1 and Figures 1-3. 

Table 1: MSE values for nonparametric models 
n CLs AICc GCV RECP 

50 
15 0.0248 0.0202 0.0175 
35 0.0362 0.0287 0.0252 
50 0.0366 0.0297 0.0263 

100 
15 0.0163 0.0148 0.0133 
35 0.0206 0.0188 0.0162 
50 0.0258 0.0237 0.0199 

200 
15 0.0143 0.0137 0.0127 
35 0.0178 0.0171 0.0153 
50 0.0182 0.0177 0.0167 

As can be seen from Table 1, the criteria giving 
smallest MSE are indicated by bold color. As 
expected, the MSE values are improved as the 
sample sizes increases. From this, it is easily 
understood that RECP outperforms than the others 
for all censoring levels and samples size.  
 Boxplots for MSE values based on each criterion 
are illustrated in Figure 1. In this Figure, A1, A2 
and A3 denote the MSE values based on AICc for 
sample sizes n=50,100 and 200, respectively. In a 
similar fashion, B1, B2 and B3 show the MSE 
values for GCV.  Finally, G1, G2 and G3 indicate 
the MSE values for RECP. Also, the upper panel of 
Figure 1 has CL=15%, medium panel CL=35%, and 
bottom panel CL= 50%.    

 
Figure 1: Boxplots of the MSE values for estimated 
nonparametric models 
 As can be seen Figure 1, as the sample size n  
gets large, the range of estimates are getting narrow. 
It can be said that the estimates from medium and 
large sized samples are more stable than those from 
small sized sample 
 The left panel of the Figure 2 represents the 
curves estimated by AICc, GCV and RECP criteria 
for n=50 and CL=15%, while right panel shows the 
same curves but for CL= 50%.    

 
Figure 2: Real observations and the true function 
together with its smooth curves estimated by AICc, 
GCV and RECP  
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As for Figure 3, it is similar to Figure 2, the left 
panel represents the same curves for n=100 and 
CL=15%, while right panel shows the same curves 
for n=200 and CL= 50%.    

Each panel compares the AICc, GCV and RECP 
fit to real functions.  As can be seen from Figures 2-
3, the estimated functions move away from the real 
function when censoring levels increases, regardless 
of the sample sizes. Also, simulation experiment 
results show that the quality of estimated curves are 
reasonable for censoring levels, CL=15% and 35%, 
when compared to the CL=50%. 

 
Figure 3: Similar to Figure 2, but for n=100, 
CL=35%, n=200 and CL=50%.  

5 Conclusions 
In this paper, we used kernel smoothing method to 
get the fits of an unknown regression function in 
nonparametric model with right censored data. 
Efficient computation of this method requires an 
optimum smoothing parameter. This parameter 
provided by means of AICc, GCV, and RECP 
criteria. Accordingly, we obtained three different 
estimators for the nonparametric regression function 
by using these criteria.We considered a simulated 
1000 test observations to compare three different 
estimators for all sample sizes and censoring levels.  
 Consequently, the simulation results confirm that 
we can suggest the following main ideas: 
• RECP criterion illustrates the better performance 

than the other criteria for all sample sizes and all 
censoring levels.  

• Improved version of AIC and GCV criteria have 
similar performances in general, but GCV is the 
better than the improved AIC. 

• Also as can be seen in Figures 2-3, although all 
estimated curves are close to real function, the 
curve estimated by RECP hardly distinguish 
from real function and this method gave the best 
values for all simulation study. 
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