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Abstract:   In the paper the solution evolutionary method of hydrodynamic stability problems is offered. The 

essence of this method consists that an arbitrary initial disturbance is described by one wave with the greatest 

increment on large times, which varies according to the law ( )exp i . In order to verify the new method and 

to work out the numerical scheme the stability calculations were carried out also on the base of the classical 

theory. The evolutionary method is used to study the effects of the gas injection direction through a porous sur-

face on stability of a supersonic boundary layer at the Mach number M=2. It was established that with reduc-

tion of a slope angle of a gas injection to the flat plate the stability of a boundary layer increases, and the tan-

gential blowing influence on a boundary layer stability of is poorly 

 

Key-Words: evolutionary method, compressible boundary-layer, hydrodynamic stability, gas injection, numeri-
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1 Introduction 
Porous cooling is an effective method for a ther-

mal protection of heat-stressed elements of technical 

apparatus [1-2]. The basic mechanism of a porous 

cooling consists in absorption of the thermal energy 

of the hot gas by a cold gas which is injected 

through a permeable surface. While the direction of 

a blowing cold gas relatively streamlined surfaces 

may be different (from normal to tangential). In ad-

dition to the heat protection, there is another im-

portant problem. It is connected with the control of 

the laminar-turbulent transition. It is known that 

with an increase of a gas density near the wall the 

boundary layer stability increases. To raise density 

near the walls it is possible to blow heavy gas 

through a porous wall. For a case of a subsonic 

boundary layer the possibility of its stabilization on 

the basis of a heavy gas injection was confirmed in 

[3]. Normal inflow relatively a streamlined surface 

promotes to an appearance of an inflection point in a 

velocity profile that leads to the destabilization of 

flow [4-6]. For reduction of this effect it is possible 

to blow a gas under some angle to the main flow 

direction. The tangential inflow is the limiting case 

the vectored injection. The boundary layer stability 

with the gas injection under angles not equal to π/2 

to the surface has not been investigated so far. 

It served as motivation of the real paper in which 

the case of the uniform gas injection is considered. 

As for methods of the stability characteristics 

calculation, it is necessary to notice that, as a rule, 

authors use the standard method of elementary 

waves leading to the solution of the eigenvalue 

problem of the homogeneous system of ordinary 

differential equations with homogeneous boundary 

conditions [4.7]. The lack of this method is in the 

difficulty to find the waves with the highest incre-

ment.  Its search comes to the end successfully un-

der a condition if its approximate value is known. 

Therefore, growing in time waves given the front 

direction and wave number, depending on the in-

coming values of main flow, such as Mach number, 

Reynolds number and others, are calculated on the 

base of small changes of determinative parameters. 

However, the wave with the maximum increment 

for some basic terms will not be the determinative 

one (with a maximum growth factor), for the other 

flow parameters. Therefore, it is desirable to have 

such a calculation method which would guarantee 

uniquely obtaining of the wave with the highest in-

crement. For linear problems, this can be achieved 

by an evolutionary method by the integration over 

time of partial differential equations. Because any 

disturbance, satisfying uniform boundary conditions 

can be decomposed into the sum of the waves with 

different increments, the wave with the largest in-

crement will dominate at large times. This method 

can be called by the usual term - the establishing 

method. In contrast to the generally accepted meth-

od of establishing when the solution goes to the 

constant, in our case the solution goes to the expo-

nential dependence on time. In the hydrodynamic 

stability theory there are the temporary instability 

(wave number on uniform spatial coordinates are 

real) and the spatial instability (when perturbations 

with real frequencies growth in the space). At low 
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amplification rate in the space and time, which is 

characteristic for the boundary layers, temporal and 

spatial increments are associated with the simple 

approximate relation: the amplification rate in space 

equals the negative temporary divided by the wave 

group velocity [4.8]. If necessary, the more precise 

value of the spatial amplification rate can be ob-

tained by the classical method. 

In this paper we investigate theoretically influ-

ence of the gas blowing direction through the porous 

surface the supersonic boundary layer stability using 

the classical method of elementary waves and evo-

lutionary method. 

 

2 Basic equations 
The initial equations of the disturbances evolu-

tion in a supersonic boundary layer are well known 

Navier - Stokes, continuity, energy and state [9]:  
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Here 
*

v  – velocity with components  * * *, ,u v w  

in   , ,x y z −directions, * * *,  ,  p T − pressure, density 

and temperature, Pc  – specific heat at constant pres-

sure, R − gas constant, S − velocity tensor, 
* */pPr c   , 

* − thermal conductivity, * − 

dynamic viscosity. 

In this paper the disturbance in supersonic 

boundary layers on a flat plate at high Reynolds 

numbers * * */x e e eRe u x   is explored, where 

* * *, ,e e eu    - velocity, density and dynamic viscosity 

on external border of boundary layer, x - distance 

from the front edge of the plate. In this case the 

main flow is independent on the transverse  z  coor-

dinate, weakly dependents on x - coordinate and 

velocity in y - direction is low. Therefore, the main 

(stationary) flow can be considered as a plane-

parallel. All its parameters depend on the one coor-

dinate y , only velocity in the x-direction  *u y is 

unequal to zero. We have introduced the dimension-

less: coordinates, time, and flow parameters in the 

form: /dX dx  , /dY dy  , /dZ dz  , 

* /ed u dt  , * */ ev v u  , * */ ep p p , * */ eT T T , 

* */ e   , where * * */e e ex u    - the boundary 

layer thickness, index   e  indicates that the value is 

taken at the outer edge of the boundary layer. 

Velocity, density, pressure and temperature of 

the compressible gas in the boundary layer can be 

represented in the form: 

 u U Y u   , v v  , w w  ,  p P Y p   , 

 0T T Y    ,  01/ T Y    , where 

   0, ,U Y P T Y  – velocity, pressure, and tempera-

ture in the unperturbed laminar boundary layer. The 

perturbed parameters are marked by the prime, 

which depend on , ,X Y Z  and  . Equations for line-

ar disturbances in the approximation of Dana-Lin, 

Alekseev [7, 10] for the two-dimensional boundary 

layer have the form [10]: 
2
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0 0/ /p P T T     . 

The system (1) should be solved with boundary 

conditions [4]: 

0
d

u v c d
dY


  


   , at   0,Y   .       (2) 

The classical theory of stability founded on the 

method of elementary waves

     , ,π expp Y i X Z     a a . Here 

components the vector a , , , ,f h   are amplitudes 

of perturbations , , ,  , . u v w        Equations (1) are 

given to system of the linear ordinary differential 

equations: 

 
2
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1 dU i f
i U c f

T dY ReM dY

d 
 



 
    

 
, 
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From (2) it is possible to receive new boundary 

conditions: 

0
d

f c d
dY


      при 0, .Y              (4) 

Wave numbers   and   are real at the tempo-

rary instability and frequency    is complex-valued, 

which is a result of solving the eigenvalues problem 

of homogeneous equations with homogeneous 

boundary conditions. The flow in the boundary layer 

is unstable for positive values of the imaginary part 

of r ii    . 

In general, the number of eigenvalues is infinite, 

or at least large. However, we are interested primari-

ly in frequency with the highest values of the imagi-

nary part. The search of such frequencies is a chal-

lenge. 

The evolutionary method for finding of such 

frequencies is proposed and realized in this paper 

for the first time. 

The essence of this method consists that an arbi-

trary initial disturbance is described by one wave 

with the greatest increment on large times, which 

varies according to the law ( )exp i . 

For disturbances    , , expX Y i Z  a a  equa-

tions (1) and boundary conditions (2) take the form: 
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3 The computational domain and the 

numerical scheme 
The problem was solved for the periodic pertur-

bation in the coordinate  x , i.e. 

 , , ( , , )Y X Y X L  a a  and monochromatic 

conditions on the lateral coordinate z. The region of 

an integration in the normal direction was enclosed 

in the interval 0<Y<Y
*
. We took into account the 

conditions of equality to zero disturbances at Y
*
. 

Value Y
*
 was accepted rather large that its addition-

al increase did not lead to essential change of dis-

turbances increments.  

For the integration of the system (5) we used 2-

step finite-difference scheme [11]. 
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The second step: 
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The scheme is stable; the approximation order is

 2 2, ,x yO h h . Values , , , , ,  f r h   on the ( 1n  ) 

layer were obtained from each equation in the ap-

propriate order. Unknown values at the boundary 

were obtained by interpolating on three adjacent 

points.  

The value    was determined by the formula: 

(1/ ) / )2 ( n N niN ln     . Calculations were 

performed until its value was constant with the ac-

ceptable accuracy. In this case the real or imaginary 

part of    , ,  c cq XY  were changed according to the 

relation:    , , ,, , sinr i r i r iq Y X a X    . The val-

ue of 2 /m L  , where m- the number of periods 

stacked on the calculating range of L. We used a 

rectangular mesh with 240 points in the X- coodri-

nate and 400 point in Y- coordinate with the time 

step 0.001  .   

 

4 Boundary layer equations and their 

solution. 
In self-similar variables boundary layer equations 

have the form [12]: 

0
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Here /p VC C   - ratio of specific heats, 

* /e e eM u a  - Mach number and ea - sound velocity 

at the external border of boundary layer. At a uni-

form gas blowing through a wall at an angle λ to the 

main flow direction the velocity components on a 

wall are defined as follows:  0V Gsin , 

 0U Gcos . Due to the fact that 

   0 0 / wg ReV T   [3], it is possible to get

 0 / wg GResin T  . Let us the parameter 

/q wC ReG T   characterizes the intensity of the 

suction or blowing through the surface. In this case 

boundary conditions on thermally insulated surface 

can be written as: 

at 0Y  : qg C sin , w
q

T
U C cos

Re
 , 0

dT

dY
 ;      

at Y  : 1T U  . 

Introducing the new variables: 

1

dU
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dY
 , 2z g , 3z U , 4

dT
z

Pr dY


 , 5 ;z T  

boundary layer equations are written as a system of 

first order equations: 
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Boundary conditions are rewritten in the form: 

 2 0 qz C sin ,  3 0 w
q

T
z C cos

Re
 ,  4 0 0z  , 

   3 5 1.z z     

The system (7) is integrated by the Runge-Kutta 

method from wall to mY . Necessary values 

 1 0a z ,  5 0b z  and mY  are determined during 

the iterations, based on Newton's method, and a 

condition that  3 1mz Y  ,  5 11mz Y   . The de-

pendence of   on temperature was adopted in an 

accordance with the Sutherland's law which in di-

mensionless form can be written as follows: 

 
*

3/2

0 *
0

1 /

/

s e

s e

T T
T

T T T






, 

where 110sT K - Sutherland's constant, *
eT - tem-

perature on the boundary layer edge. In wind tun-

nels without heating at a constant stagnation tem-

perature *
0T ,   * * 2

0 / 1 1e eT T M   . It was ac-

cepted *
0 300T K  in this paper. 
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5 Results  
The results of calculations of stationary values in the 

boundary layer at Mach number Me = 2 are present-

ed in figures 1-3. Distributions of the longitudinal 

velocity, temperature and dynamic viscosity are 

shown in Fig. 1 for the injection parameter  Cq=0.  It 

should be noted that all the stationary flow 

parameters come to unit approximately at Y = 8. 

The calculations results of longitudinal velocity 

profiles for different values of the parameter Cq are 

presented in Fig 2. Note, that approaching  to value 

of  velocity  to unit is slowed with increasing 

injection rates. Thus one can clearly see that normal 

blowing leads to increasing of boundary layer 

thickens. Furthermore, an inflection point is ap-

peared in the velocity profile which can contribute 

to destabilization of the boundary layer. 

 
Fig. 1 Profiles of stationary flow parameters. 

 

 
Fig. 2 Distribution of longitudinal velocities for var-

ious values of the parameter Cq 

 

Influence of blowing direction in the distribution 

of longitudinal velocity is shown in Fig. 3.  The ve-

locity distribution without blowing is marked by 

symbols. From these data it follows that the station-

ary flow parameters are dependent on the tangential 

injection weakly. The normal velocity component 

plays a decisive role in this respect. 

 
Fig. 3 Dependences of longitudinal velocities on the 

normal coordinate for the different λ  

 

 
Fig. 4 The dependence of the real part of the 

pressure perturbation near the walls over time. 

 

 
Fig. 5 The dependence of the real part of the 

pressure perturbation on the coordinate X. 

 

Calculations results of perturbation parameters 

in the supersonic boundary layer are presented in 

Fig. 4-8, including the maximum degree of their 
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temporary growth. Main results were obtained on 

the basis of equations (3).  Stability calculations 

were carried out by the classical theory for 

processing of the settlement scheme (4). As already 

mentioned, at large times the solution is described 

by an exponential dependence on the time, 

regardless of the initial data. Therefore, we will not 

dwell on the initial data which were set arbitrarily. 

 

 
Fig. 6 Dependences of amplitudes of the velocity, 

density, temperature and pressure disturbances on 

the normal coordinate. 

 

Fig. 4 shows the time variation of the real part of 

the pressure amplitude near the wall, 0Y  , when 

Y
*
=40. In the graph B the result is shown in the time 

interval 2000 3000   

Initial values of πr of the graph B increased in 

one thousand times are shown on the top graph A, 

from which one can see that in the initial time 

moments there are several frequencies. However, 

over time the most growing frequency is allocated 

which changes under the law 0cos( )r iexp    . 

Fig. 5 shows the distribution of the real part of 

the pressure amplitude at the two times analogously 

to Fig. 4. It is seen that at large times the spatial 

dependence is described by a harmonic dependence 

with the wave number 2 / L    rather well. The 

resulting increment ωi is not different from the value 

of the classical theory in fact. 

Profiles of the absolute values of the amplitudes 

of the perturbation are shown in Fig. 6. They 

correspond to the time when the solution came to an 

exponential dependence. Characteristically, that 

longitudinal velocity has the largest amplitude. 

Therefore, all amplitudes were normalized on the 

maximum longitudinal velocity value. It is also 

should be noted that the normal velocity amplitude 

perturbation reaches the maximum value at the outer 

edge. 

The necessary computational domain is 

determined empirically by comparing of the growth 

rates for different values of 𝑌∗with the data of the 

classical theory. From fig. 7 it is clearly visible that 

at the thickness * 40Y   results of numerical 

modeling differ from data of the classical theory a 

little. 

 
Fig. 7 Dependences of the increments on the wave 

number for different thicknesses.  
 

 
Fig. 8 Dependences of the grow rates on the 

parameter  for 0.5 qC    and 0 qC   

 

Fig. 8 shows a change of grow rates depending 

on the wave number   for various injection 

directions of at 0.5 qC   . The red line corresponds 

to tangential blowing and green circles marks 

represent the results without blowing. It is seen that 

the boundary layer stability increases with 

decreasing of the angle λ, and tangential blowing (

0  ) does not affect the boundary layer stability. 

At the same time normal blowing can increase the 

rate amplification in several times. 
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4 Conclusions 

1. In the paper the new method of stability 

problem solving of the boundary layer is 

proposed, which is based on an evolutionary 

perturbations development in time.  

2. Influence of the gas blowing direction through 

a porous surface on the supersonic boundary 

layer stability was studied for the first time. In 

the contrast to the strong influence of normal 

blowing on the boundary layer stability, 

tangential blowing has a little effect on it.  

3. The developed method will be used in 

problems of the supersonic boundary layer 

stability with blowing of foreign gases, and the 

numerical scheme will be work for modeling of 

nonlinear problems of the laminar-turbulent 

transition. 
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