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Abstract: - Assessment of stress conditions created by vertical or horizontal forces to the supporting medium is 
a frequent problem of design. In engineering practice, beside static case often dynamic effects must be taken 
into consideration for plate design problems. Plate vibration solutions have been available for regular 
geometries for a long time, but it will be necessary to describe the governing equation of motion in a general 
mathematical form. This is not easy. The intention of this study is to extend analytical solutions of the discrete 
one-dimensional beam elements resting on elastic foundation for solution of plate vibration problems. The 
solution can be stated as an extension of the so-called discrete parameter approach where the physical domain 
is broken down into discrete sub-domains, each endowed with a response suitable for the purpose of mimicking 
problem at hand.  
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1 Introduction 
Plates on elastic foundations have received 
considerable attention due to their wide applicability 
in many engineering disciplines. Since the 
interaction between structural foundations and 
supporting soil has a great importance in many 
engineering applications, a considerable amount of 
research has been conducted. Many studies, such as 
[1-4] have been done to find a convenient 
representation of physical behavior of a real 
structural component supported on a foundation. 
There are several practical foundation models as 
well as their proper mathematical formulations. A 
broad range of the beam or plates as engineering 
problems has been solved numerically such as finite 
element and boundary element methods [5-9]. 
Owing to its convenience in solution of plate 
problems as a numerical method the finite strip 
method have attracted much attention from many 

authors as [10-12] suggested a procedure 
incorporating the finite strip method together with 
spring systems for treating plates on elastic 
supports. However series and closed form solutions 
for plates have been published for a limited number 
of cases as [13-19]. The orthogonalization of the 
series and other calculations are performed using 
Fourier expansion of Bernoulli polynomials under 
some realistic approximations for the limiting values 
of the boundary conditions. The studies can be 
summarized as series expansion consisting of some 
specially chosen trigonometric functions used for 
free vibrations of rectangular plates resting on 
elastic foundations with various boundaries and 
subjected to uniform and constant compressive, 
unidirectional forces and closed form solutions of 
free vibration problem of thin rectangular plates on 
Winkler and Pasternak elastic foundation model 
developed with some limitations such as mixed or 
fully-clamped boundary conditions etc. 
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This study is oriented toward the development of 
finite grid element. It is an application of the finite 
element method. The aim is to investigate an 
improved finite grid solution for vibration problems 
of plates on elastic foundation. This is possible for 
free as well as forced vibration cases.  The solution 
can be stated as an extension of the so-called 
discrete parameter approach where the physical 
domain is broken down into discrete sub-domains, 
each endowed with a response suitable for the 
purpose of mimicking problem at hand. In another 
words this method the discretized plate element is 
reassembled by the matrix displacement method so 
that consistent mass matrix of the total structure is 
generated schme to compute all displacements for 
each nodal point in a convenient sequence. By this 
representation, it is possible to solve complicated 
plate problems such as non-uniform thickness and 
foundation properties, arbitrary boundary and 
loading conditions and discontinuous surfaces. 
 
 
2 Theory of Problem Formulation 

 
 
In engineering practice, dynamic effects need to 

be taken into consideration for a wide variety of 
plate problems. It will be necessary to describe the 
governing equation of motion of plates in a general 
mathematical form for such cases. This can be 
achieved by inserting the inertia forces due to the 
lateral translations, in an appropriate way, into the 
governing differential equation for static 
equilibrium. For dynamic problems of the plates on 
elastic foundations with arbitrary shapes and 
boundary conditions with most elements developed 
to date there exists no rigorous solution except in 
the form of infinite Fourier series for a Levy-type 
solution. The series solutions are valid for very 
limited cases such as when the second foundation 
parameter has been eliminated, and simple loading 
and boundary conditions exist. Grillages of beam 
elements that have no such limitations can represent 
the plates. 

 
Fig.1 Representation of a rectangular plate by grids 
as parallel sets of one-dimensional beam elements 
replaces the continuous surface. 

The usual approach in formulating problems of 
beams, plates, and shells supported by elastic media 
is based on the inclusion of the foundation reaction 
in the corresponding differential equation of the 
beam, plate, or shell. In case of elastic foundation 
under the combined action of transverse load and 
vibration the governing differential equation of the 
plates can be obtained as;  
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where )t,y,x(ww = is the transverse deflection 
of the plate, k1 is Winkler parameter with the unit of 
force per unit area/per unit length (force/length3), 
kθ is reaction moment per unit area per unit rotation, 
q(x,y) is the external loads, D is flexural rigidity of 
plate and m is the mass of the plate per unit area. 

By representing the plate with assemblage of 
individual beam elements interconnected at their 
neighboring joints, the system cannot truly be equal 
to the continuous structure, however sufficient 
accuracy can be obtained similar to the static case.  
Therefore plates can be modeled as an assemblage 
of individual beam elements interconnected at their 
intersecting joints. There are many researches 
concerning analysis of beam element resting on 
elastic foundation as [20-24]. The properties of such 
beam elements on elastic foundations will be a very 
useful tool to solve such generalized problems. 

 
Fig.2 Representation of the beam element resting on 
a generalized foundation 
 

By representing the plate shown in Fig.1 with 
individual beam elements the problem can be 
reduced to a one-dimensional one. On the other 
hand the similar elements can be formed in radial 
and tangential directions for circular plates as [25] . 
By representing the continuous plate with individual 
beam elements resting on continuous springs shown 
in Fig. 2 the problem will be reduced to one-
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dimensional one. Then Eq. (1) can be rewritten in 
reduced form of the governing equation for one-
dimensional beam elements as; 
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The main advantage of the reduction is that the 
exact geometric stiffness matrix can be determined 
for the beam elements and these matrices can be 
used as a basis of assembling the elements to apply 
to plate problems as [26]. Then dynamic problems 
of the plates resting on Winkler foundation with 
arbitrary loading and boundary conditions could be 
solved approximately. Assemblies of beam elements 
that have no limitations for loading and boundary 
conditions can represent plates adequately. The 
properties of beam elements resemble strips of 
plates resting on elastic foundations is a convenient 
tool to solve complicated plate problems.   

The degrees of freedom of the element are the 
local torsion, rotation and translation at each end. 
Since the angular displacements are obtained from 
the pure torsion member, the torsional DOF’s are 
independent of the foundation. Then it can be 
assumed that the displacements within the span are 
defined by the same interpolation functions those 
already derived for obtaining the element stiffness 
matrices. loading conditions and discontinuous 
surfaces. 
 
 
3 Consistent Mass Matrices  

 
 
Consider the beam element shown in Fig. 3 

having a mass distribution m(x). If it is 
subjected to a unit angular acceleration at point 
a, the acceleration would be developed along its 
length as follow; 

22 w)x()x(w  ψ=              (3a) 

By d’Alembert’s principle, the inertial force due 
to this acceleration is; 

22I w)x()x(m)x(w)x(m)x(f  ψ==            (3b) 

 
Fig.3 Representation of a beam element subjected to 
a unit real acceleration and virtual translation at the 
left side 

By the principle of virtual displacements the 
mass influence coefficients associated with this 
acceleration as the nodal inertial forces can be 
evaluated. As an example, it is possible to evaluate 
the vertical force pa, equating work done by the 
external force due to virtual displacement, to the 
work done on the distributed inertial forces fI(x). 
That is, 

∫=
L

0
I3a dx)x(w)x(fwp δδ    (4) 

Substituting the vertical virtual displacement in 
terms of the shape functions into the equation then, 

∫=
L

0
3223 dx)x()x()x(mm ψψ    (5) 

By this analogy, this equation can be extended to 
evaluate for the other degrees of freedoms such as; 

∫=
L

0
jiij dx)x()x()x(mm ψψ    (6) 

By using the proper shape functions, the 
corresponding shape functions derived for 
conventional beam or beam element resting one or 
two-parameter elastic foundations, this equation lets 
to evaluate all of the mass matrix terms. Computing 
the mass coefficients by the same shape functions 
with same procedures as done for determining the 
stiffness matrices is called consistent-mass matrices. 

 
3.1 Consistent mass matrices for Two-
Parameter foundation 
For one-parameter foundation case it is possible to 
evaluate mass influence coefficients of a structural 
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element with the procedures similar to that 
obtaining the element stiffness matrix by making the 
use of finite element concept. The consistent mass 
matrix of beam elements resting on two-parameter 
elastic foundations can also be evaluated by the 
same procedures as Winkler parameter case[27]. 
Substituting the proper shape functions of the beam 
elements resting on two-parameter derived by [26] 
for both B2A <  and B2A >  cases 
respectively, into Equation (6) leads to evaluate the 
consistent mass matrices. The terms of the mass 
matrix, )L,,t,p(fmij µ= , obtained as functions of 
foundation parameters, length of the elements and 
mass per unit length. Since the terms for two-
parameter cases are too complex and extremely long 
functions, they are not presented in this study. 
However, by letting both of the foundation 
parameters tend to zero, the correctness of the terms 
is checked. When foundation parameter k1 and kθ 
tend to zero (or p→0 and t→0), the terms in the 
equations reduce to the conventional beam 
consistent mass terms obtained by Hermitian 
functions as for Winkler case. 
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The influence of the foundation parameters k1 
and kθ on the consistent mass terms for B2A <  
with corresponding terms of Eq. (6) can be 
normalized as shown in Fig. 4. Note that, as the 
second parameter tends to zero (i.e. t →0) the same 
two-dimensional curves of one-parameter case 
given in Fig. 4 are obtained. 

 
Fig.4 Influence of two-parameter foundation on the 
m22, m25, m26, m33, m36 and m56 normalized 
consistent mass terms 

From the figure it is inferred that presence of 
second foundation parameter kθ in the analysis is 
remarkably dominant. This might have been 
anticipated because strain energy density functional 
includes one more term in the case of two parameter 
foundation than that of the Winkler foundation. 

 
3.2 Assembling the consistent mass matrix of 
the total structure 

After obtaining the consistent mass matrices of 
each one dimensional elements the discretized plate 
element reassembled by the matrix displacement 
method to obtain free vibration frequencies of a total 
structure. That is, the stiffness and consistent mass 
matrices of the total structure is generated by using 
a proper numbering shame to collect all 
displacements for each nodal point in a convenient 
sequence of the system for rectangular grids can be 
generated as follow;  

iii

NE

1i
aMaM T

sys ∑
=

=  

where i is the individual element number, NE is 
the number of elements depending on boundary 
conditions, ai is the individual rotation element 
matrix, Mi is the proper element consistent mass 
matrix for a beam conventional resting on one-
parameter elastic foundation and Msys is the system 
consistent mass matrix. Then the equations of 
motion for a system in a free vibration as an 
eigenvalue problem may be written as; 

0w)( 2 =− syssys Mk ω   
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where the quantities ω2 are the eigenvalues indicting 
the square of free vibration frequencies that satisfy 
the above equation, while the corresponding 
displacement vector w express the fitting shapes of 
the vibrating system as the eigenvectors of mode 
shapes and ksys is the stiffness matrix of the total 
structure defined by the same interpolation functions 
those already derived for obtaining the element 
stiffness matrices. 
 
 
4 Conclusion 
The solution of free vibration problems for 
rectangular plates resting on elastic foundations is 
considered to be too complex. In many cases there is 
apparently no analytical solution other than simple 
cases. A grid work analogy called the Finite Grid 
Solution involving discretized plate properties 
mapped onto equivalent beams with adjusted 
parameters and matrix displacement analysis are 
used to develop a more general simplified numerical 
approach for such complicated problems. It is 
shown that after obtaining solutions of the 
governing differential equations of beam elements, 
the derived exact shape functions (interpolation 
functions) have extended to determine consistent 
mass matrices by finite element method.  

It is noted that the consistent mass terms related 
to one dimensional beam elements on elastic 
foundations are very sensitive to variation of 
foundation parameters. It can be concluded that the 
finite grid solution as a combination of finite 
element method, lattice analogy and matrix 
displacement analysis of grid works is a useful tool 
to improve the solution for various vibration of plate 
problems.  
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