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Abstract: The present paper deals with the comparison of values of resistance of a hot-rolled steel beam with 
initial imperfections. Very detailed 3D calculation models of beams were created in the computer programme 
Ansys applying the finite elements SOLID185. Eight nodes having three degrees of freedom at each node 
define the element SOLID185. Resistances were computed by application of geometrically and material 
nonlinear methods to the selected degree of non-dimensional slenderness depending on nominal length of the 
beam. Beams are subjected to bending, and their total and elastic resistance are compared with analytical, 
empirical and standard types of resistance. 
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1 Introduction 
The stiffness of steel beams subjected to bending is 
substantially higher in the plane associated with 
bending about their major principal axis than in the 
plane associated with bending about their minor 
principal axis [1]. 

The static resistance is the crucial quantity 
influencing the safety and reliability of steel beams. 
Initial imperfections differ according to the 
manufacturing type of the beam [2]. Initial 
imperfections of steel plated girder resistance arise 
during the welding process in particular [3]. On the 
other side, initial imperfections of hot-rolled steel 
beams are often modelled so that they originate in 
the first eigenmode of lateral beam buckling [4].  

The imperfections of a hot-rolled steel I-beam 
loaded by equal end bending moments of opposite 
sense M consist of initial axis curvature v0 and initial 
cross-section rotation φ0 [5]. The imperfection 
modelled according to the first eigenmode of lateral 
beam buckling assumes that v0 and φ0 are dependent 
functionally, and have the correlation 1 [6]. From 
the point of view of design reliability, it is 
conservative because it leads to the most rapid 
decrease of resistance. 

In general, reliability analyses are important 
parts of multi-objective optimization of economic 
aspects of building engineering and mechanical one 
[7-9]. Large attention is to be paid to computational 
models of supporting elements in particular.  

The presented paper is concentrated on finite 
element modelling and nonlinear analyses of 
resistance of a hot-rolled steel beam I200. 
 

2 Computational Model 
The computational model represents a hot-rolled 
beam I200 steel grade 235. The cross-section 
geometry was simplified according to Fig.1b) so 
that it could be possible to define it by four 
quantities, h, b, t1 and t2. 
 

 
a)        b) 

 
Fig. 1: Profile I200: a) real, b) idealized 

 
The initial geometrical imperfection of beams is 

designed according to the first eigenmode of 
buckling at the stability loss by lateral beam 
buckling. It consists of initial displacement of axis 
v0 and of initial rotation of cross-sections φ0. These 
imperfections are considered to be affine to the final 
shape as the functions sinus, v0 being the curvature 
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of the beam axis in the direction of major axis, i.e., 
in plane xy, and φ0, rotation of cross-sections along 
the beam length, see Fig.2. 
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Fig. 2: Initial imperfections 
 

If the beam is curved according to the first 
eigenmode, thus it holds for amplitudes av0 and aφ0 
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where e0 is the amplitude of one half-wave of the 
sine function relating to the upper edge of the cross-
section, and is designed as L/1000 [10], h is the 
cross-section height, E is the Young’s modulus of 
elasticity, Iz is the inertia moment to the axis z, L is 
the beam length, and Mcr is the elastic critical 
moment at lateral beam buckling. The elastic 
behaviour of beams can be analysed using two 
differential equations [11]: 
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where G is the shear modulus, Iω is the warping 
constant, and I t is the torsion constant. 

 
2.1 Loading and Boundary Conditions 
The beam is considered as simply supported and 
loaded at both ends by equal bending moment of 

opposite sense. For such a loading case, the relation 
for Mcr can be derived according to [11], in the form 
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The bending moment on the edge cross-section 

of 3D model was created as a pair of forces in its 
nodes. The forces act during loading 
perpendicularly to the end cross-section, and so, 
their arms ri remain constant, see Fig.3a). 

Boundary conditions are set so that the edge 
cross-sections can warp, see Fig.3b). The support in 
direction of axis x ux = 0 is introduced at one end 
only. 

 

 
a) b) 

 
Fig. 3: a) Loading of edge cross-sections,  

         b) boundary conditions 
 

2.2 Finite Element Model 
Computational models were created in the 
programme Ansys, using 3D elements SOLID185. 
SOLID185 is an 8-node element which can be used 
for 3D modelling of solid structures and has 
plasticity, hyperelasticity, stress stiffening, creep, 
large deflection, and large strain capabilities. It is 
defined by eight nodes having three degrees of 
freedom at each node: translations in the nodal x, y, 
and z directions. The element was set to be a 
homogeneous structural solid element. The 
enhanced strain formulation was considered. The 
enhanced strain formulation prevents shear locking 
in bending-dominated problems and volumetric 
locking in nearly incompressible cases. The 
formulation introduces certain number of internal 
(and inaccessible) degrees of freedom to overcome 
shear locking, and an additional internal degree of 
freedom for volumetric locking (except for the case 
of plane stress in 2-D elements). All internal degrees 
of freedom are introduced automatically at the 
element level and condensed out during the solution 
phase of the analysis [12]. 
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An example of the computational model is 
presented in Fig.4 and Fig.5. Initial imperfections 
are illustrated here in magnified scale. 

 

 
 

Fig. 4: Computational model in Ansys - axonometry 
 

 
 

Fig. 5: Computational model in Ansys – views 
 

2.2.1 Material Properties  
An elastic-plastic stress-strain diagram without 
hardening according to the standard ENV 1993-1-
1:1992 is used for the computation. The value of 
yield strength fy is considered by nominal value 
235 MPa. 
 

 
 

Fig. 6: Bilinear stress-strain diagram 
 

3 Load-Carrying Capacity 
The value of elastic resistance MR of the beam can 
be derived on behalf of equations (3) and (4). MR 
represents the bending moment at which the 
maximum value of the von Mises stress corresponds 
to yield strength fy of the steel, and is given by the 
relation [4]: 
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Wy is the cross-section module to axis y, and Wz 
is the cross-section module to axis z. 
 
Table 1: Cross-section characteristics 
Characteristic Symbol Value 
Cross-section height h 0.200 m 
Cross-section width b 0.090 m 
Web thickness t1 0.007 5 m 
Flange thickness at 
quarter of the width 

t2 0.011 3 m 

Second moment of 
area about axis y 

Iy 21.235E-6 m4 

Second moment of 
area about axis z 

Iz 1.188E-6 m4 

Torsion constant I t 1.187E-7 m4 
Warping constant Iω 1.017E-8 m6 
Section modulus 
about axis y 

Wy 21.235E-5 m3 

Section modulus 
about axis z 

Wz 2.639E-5 m3 

Plastic section 
modulus about axis y 

Wpl,y 24.684E-5 m3 

 
To calculate the plastic resistance Mpl,R, it is 

possible to apply, by means of (6), the empirical 
relation according to [13] 
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LTλ is the non-dimensional slenderness at lateral 
beam buckling according to the Eurocode 3 
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where Wpl,y is the plastic cross-section module to 
axis y. Cross-section characteristics of the idealized 
profile I200 according to Fig.1b) are given in 
Table 1. 
 
3.1 Resistance According to Eurocode 3 
The design resistance moment of the beam at lateral 
beam buckling Mb,Rd of a horizontally not supported 
beam is determined from the relation  
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The cross-section I200 is the cross-section class 1, 
and therefore the cross-section module Wy can be 
determined as Wy = Wpl,y. For the partial resistance 
factor of cross-section when evaluating the stability 
γM1 holds γM1 =1.0. Reduction factor for lateral-
torsional buckling χLT for the appropriate 

slenderness LTλ  may be determined from 
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in which 
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The curve of lateral beam buckling b can be used 

for the cross-section I200. The value of imperfection 
factor for lateral-torsional buckling is αLT = 0.34. 
 
3.2 Resistance of the Computational Model 
The computational model in the programme Ansys 
is loaded increasingly, and calculated in 
geometrically nonlinear way by the Newton-
Raphson method. The plastic resistance Mpl,Ansys is 
defined as the maximum value of bending moment 
M, when the determinant of the stiffness matrix is 
non-zero, and the calculation converges. The elastic 
resistance MR,Ansys is given by reaching of prescribed 
stress (of yield strength fy) in any point of the beam. 
With regard to the plane symmetry of the beam 
along the plane passing through its centre, and in 

parallel with the yz, reaching the yield strength takes 
place in one of cross-section tops in the middle of 
span. The linear regression was carried out to 
accurately quantify the elastic resistance for a 
narrow set of data including the value of acting 
moment and corresponding value of the von Mises 
stress near the yield strength. As the basic linear 
regression model, the polynomial of the seventh 
degree was applied, where the absolute error was 
still negligible. 
 

4 Comparison of Resistances 
The values of analytically computed resistances 
according to (6), (7) and (10) are depicted by the 
curve in Fig.7. The diagram is completed by the 
Euler hyperbola according to (5), and the values of 
resistance Md given by the relation 
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The range of non-dimensional slenderness LTλ  
is from 0 to 2.1. According to (9) and (5), non-
dimensional slenderness is, in the present problem, 
dependent only on the beam length L. This is limited 
to the length of 12 metres by the manufacturer of 
hot-rolled profiles. The relation for the dependence 
of length on non-dimensional slenderness can be 
thus derived in the form: 
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Fig. 7: Resistance vs. non-dimensional slenderness 
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Due to the non-linear relation between LTλ  and 
L, the resistance is laid out also to the beam length, 
see. Fig.8. 

 

 
 

Fig. 8: Diagram resistance vs. span length 
 

4.1 Stress of the Beam under Limit State 
The elastic resistance is given by reaching the yield 
strength fy in any point of the beam, without 
occurrence of plasticization of the cross-section. 
The course of stress σx in the span middle is 
illustrated in Fig.9a). It is evident from the diagram 
in Fig.7 that the absolute difference of resistance 
Mpl,Ansys and MR,Ansys is increasing with decreasing 
value of slenderness. There takes place the use of 
plastic reserve of the cross-section. For the 
slenderness approximately higher that 1.4, this 
difference is negligible.  
 

 
 

a)    b) 
 

Fig. 9: Stress course in web σx at reaching : a) elastic 
resistance, b) plastic resistance 

 
It can be noticed that the plastic resistance of the 

cross-section subjected to bending is an important 
part of numerous optimization analyses [14]. The 
cross-section can theoretically plasticize totally 
according to Fig.9b). However, the reality is so that 

even for the lowest considered values of 
slenderness, the cross-section of the beam need not 
plasticize fully at reaching the total resistance. Such 
a case of stress course σx is, observed, e.g., for the 

slenderness LTλ  = 0.6, presented in Fig.10. The von 
Mises stress which decides on the resulting value of 
resistance, is depicted in Fig.11 and Fig.12. 

 

 
 

Fig. 10: Stress course in web σx for slenderness 
6.0=LTλ  at reaching the total resistance 

 

 
 

Fig. 11: Course of the von Mises stress σvM in the 
beam for 6.0=LTλ at reaching the total resistance 

 

 
 

Fig. 12: Course of the von Mises σvM in the cross-
section in the span middle for slenderness 6.0=LTλ  

at reaching the total resistance 
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5 Conclusion 
It is clear from Fig.7 that, with increasing 
slenderness, the values of analytically and by 
programme computed resistances approach the 
Euller hyperbola, and the problem becomes a 
stability problem. In case of elastic resistance, the 
values from computational model MR,Ansys fully 
agree with the analytical MR. When comparing the 
values of standard resistance Mb,Rd with total 
computed Mpl,Ansys, there is obtained good agreement 

approximately from 0.7LTλ ≥ . For the lower non-
dimensional slenderness, the standard resistance is 
by 2 – 6 % higher. The empirical total resistance 
Mpl,R according to (7) gives the values lower than 
Mb,Rd and Mpl,Ansys, and thus, it is rather safe 
assessment of total resistance based on the elastic 
resistance MR. 

Although it is well known that the influence of 
residual stress decreases the resistance of hot-rolled 
struts under compressions [15], it was not 
considered in the present problem. It remains, 
however, the topic of future studies. 
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