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Abstract: This paper contains a computational approximation for the solution of a forward-backward differential
equation that models nerve conduction in a myelinated axon. We look for a solution of an equation defined in R,
which tends to known values at ±∞. Extending the approach introduced in [5, 10, 6] for linear case, a numerical
method for the solution of problem, is adapted to non linear case using a continuation method 1.

Key–Words: Mixed-type functional differential equations, Non linear Boundary Value Problem, Nerve Conduction,
Collocation, Continuation Method, Numerical Approximation, Method of Steps.

1 Introduction
This work takes into account a nonlinear mixed type
functional differential equation (MTFDE) with devi-
ating arguments from nerve conduction theory that de-
scribes the potential propagation along a myelinated
nerve axon, where the membrane has a coat of myelin
(Fig. 1) with spaced holes denominated the nodes of
Ranvier. In [2] is presented some work about the be-

Figure 1: Myelinated nerve axon.

havior of myelinated axons models. The mathemat-
ical modeling of nerve conduction implies the con-
struction of a numerical method to solve of a nonlinear
MTFDE.

In last century, in the aim of mathematical theo-
ry of optimal control, the author of [8] made an im-
portant contribution for the analysis of MTFDEs. At
eighties, in [9] is presented a significant analysis of
linear autonomous MTFDEs. In[1], one can found
an interesting research on computation of boundary
value problems (BVPs) with MTFDEs, where a pro-
blem defined on entire real axis is transformed in a
BVP defined on a limited interval. The authors of
[10, 11] introduced some numerical methods for li-
near autonomous case. The same authors extended
these methods for non-autonomous case in [5], us-
ing collo-cation. This numerical approach for linear
case was further developed in [6], where a numeri-
cal scheme, using the finite element method, was pro-

posed for the solution of such MTFDEs.
The main interest of this article is the construc-

tion of a mumerical scheme to solve numerically a
first order BVP, the non dimensional MTFDE given
by equation (1)

v′(t) = f(v(t)) + v(t− τ) + v(t+ τ)− 2v(t), (1)

where −∞ < t < +∞ and τ the non dimensional
time delay. We look for a solution defined in R, which
satisfies the nonlinear MTFDE (1) with boundary con-
ditions (2)

v(−∞) = 0, v(+∞) = 1. (2)

These boundary conditions correspond to rest poten-
tial and maximum activated potential, respectively.

The unknown v(t) represents the transmembrane
action potential at a node of a myelinated axon, in
nerve conduction model. f is related with the current-
voltage model as it will be discussed below. τ is the
inverse of the wave potential speed propagation down
the axon, it is unknown. A detailed derivation of the
model (1) (2) can be found in [3]. This mathematical
model is formulated from an equivalent electric cir-
cuit model which assumes pure saltatory conduction
(PSC). When compared with the membrane, myeline
has higher resistance and lower capacitance. If the
membrane is depolarized at a node, the action po-
tential tends to jump to the next node and excite the
membrane there. It is supposed that nodes have the
same length µi and are equally spaced and electrically
similar, the potential cross-sectional variations in axon
are negligible and the axon is infinite in extent. Sev-
eral models can be obtained using different current-
voltage expressions. Here it is used the FitzHugh-
Nagumo dynamics for the nodal membrane, without
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a recovery term. It is also assumed that a supra-
threshold stimulus begins a propagated axon potential
which, consequently, travels down the axon from node
to node. The nerve impulse travels the axon one way
only, until reach the axon terminal (place where sig-
nals in a axon link with other axons). In present case,
the function f is given by f(v) = bv(v − a)(1 − v)
where a is the threshold potential in the non dimen-
sional problem (0 < a < 1) and b is a parameter
related with the strength of the ionic current density
(b > 0). The solution at any node should be mono-
tone increasing. This arises from the current-voltage
relation f(v): once a node is turned on, it cannot re-
turn to the rest potential v = 0. To specify a particular
solution to this problem, we need to impose an addi-
tional condition. Following the authors of [3], we will
set v(0) = 0.5 to guarantee the uniqueness of solu-
tion.

In next section are explained some details about
the mathematical model, the asymptotic behavior of
solution and presented a test problem with known so-
lutions. It is also described how to apply the method
of steps and the continuation method. In last section
is described the numerical scheme to solve, the results
are discussed and some conclusions are presented.

2 Preliminaries
In this section we will present and discuss some prop-
erties of BVP (1), (2) which will be needed for its
numerical solution.

This is not an easy problem to solve numerically:
the equation contains both retarded and advanced ar-
guments and the deviation τ is unknown. Moreover,
boundary conditions are given at infinity.

We shall begin by introduce some details about
the asymptotic analysis of the solutions of the prob-
lem (1), (2). We will present an alternative approach
to compute a numerical solution, starting from an
asymptotic expansion.

2.1 Asymptotic behavior of solution
In problem (1), (2) f is C1[0, 1] and verifies f(0) =
f(1) = 0, f ′(0) < 0 and f ′(1) < 0. The deviation τ
and the monotone increasing solution v(t), satisfying
0 < v(t) < 1 are computed at the same time.

The study of the asymptotic behavior of solution
at −∞ and +∞ and on right is essential to proceed
and implement the numerical scheme. We follow an
approach similar to the one considered in [3].

After some computations taking into considera-
tion the boundary conditions, the asymptotic expan-
sion , when t ≤ −L with L being a positive constant,
takes the form

v(t) = εeλ+(t+L) + ε2b1(e
2λ+(t+L) − eλ+(t+L))

+ε3(b2e
2λ+(t+L) + b3e

3λ+(t+L)

−(b2 + b3)e
λ+(t+L)) +O(ε4).

(3)
Notice that ε = v(−L), b1, b2, b3 and λ+ are constants
depending on the Taylor expansion of f and character-
istic equation.

The asymptotic expansion, when t ≥ L, takes the
form
v(t) = 1− ε+eλ−(t−L) − ε2B1(e

2λ−(t−L) − eλ−(t−L))
−ε3+(B2e

2λ−(t−L) +B3e
3λ−(t−L)

−(B2 +B3)e
λ−(t−L)) +O(ε4+).

(4)
Notice that ε+ = 1 − v(L), B1, B2, B3 and λ− are
constants depending on Taylor expansion of f and
characteristic equation, when t ≥ L.
2.2 Test Problem
To analyse the convergence of the numerical scheme
we take into account some test problems with known
solutions.

There is one test problem with known solution
which can be solved exactly and belongs to the class
of problems in study (1), (2). Let θ be a known posi-
tive constant and define fθ(v) by

fθ(v) =
1 + 2θ(2v − 1)− (1 + θ)(2v − 1)2 − θ(3− 2v)(2v − 1)3

2(1− θ(2v − 1)2)
,

(5)
with −∞ < t < +∞. Then the solution of (1, 2)

where
τ = tanh−1(

√
θ), (6)

is given by
v(t) =

1 + tanh(t)

2
. (7)

The solution of the test problem can then be used
as an initial approximation for the numerical solution
of the target problem using the continuation method.
This means that we have to solve a sequence of equa-
tions of the form (1). In the right-hand side of the first
equation, f is replaced by fθ. Then, is each subse-
quent equation, f is replaced by fα defined by

fα(v) = αfθ(v) + (1− α)ftarget(v), 0 ≤ α ≤ 1.
(8)

When α = 1 we get the exact solution of the test prob-
lem; when α = 0 we get the approximate solution of
the target problem. So, we compute numerical solu-
tions for the problem starting with an initial approxi-
mation taking α = 1, and decreasing α from 1 until
0. For each considered problem (each α), the corre-
spondent initial approximation is the one obtained in
the previous problem, with the previous value of α.
2.3 Method of steps
In this section, the method of steps (formula (7) pre-
sented in Section 2 of [5] for linear case) is adapted
to nonlinear case. It uses the ideas based on Bell-
man’s method of steps for solving delay differential
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equations and some work introduced in [4] where the
method of steps is applied to an autonomous linear
forward-backward differential equation. In the linear
case, one solves the equation over successive inter-
vals of unitary length. In the case of equation (1),
we present the same idea with sequential intervals of
length τ .

v(t+ τ) = v′(t)− v(t− τ) + g(v(t)), t ∈ R (9)

where g(u) = 2u− f(u).
In principle, we can use formula (9) to construct

a solution for equation (2) on an interval [a, a + kτ ]
(where k is an integer), a ∈ R, starting from its ini-
tial values on [a − 2τ, a]; these starting values can be
obtained from the asymptotic expansion (3).

Supposing that all derivatives of f and v exist in
(a − 2τ, a], we may obtain the following expressions
for the solution in the first two intervals (a, a+ τ ]and
(a+ τ, a+ 2τ ] respectively:

v(t+ τ) = v′(t)− v(t− τ) + g(v(t));
v(t+ 2τ) = v′(t+ τ)− v(t) + g(v(t+ τ))

= v′′(t)− v′(t− τ) + g(v(t+ τ))
+g′v(v(t))v

′(t)− v(t).

(10)

If in first formula of (10) we set g(v) = 2v (which
corresponds to f(v(t)) ≡ 0) and τ = 1 then we obtain
formula (7) in Section 2 of [5], with a(t) ≡ 1, b(t) ≡
−1, c(t) ≡ 2.

Continuing this process, we can extend the solu-
tion to any interval, provided that the initial functions
in the first two intervals with length τ are smooth
enough functions and satisfy some simple relation-
ships.

3 Numerical Scheme
The asymptotic analysis of the solutions (as t→ ±∞)
allows us to transfer the boundary conditions and to
reduce the present problem to an equivalent problem
on a finite interval [−L− τ, L+ τ ], where L is a suf-
ficiently large number. Instead of model (2), (1) we
propose a BVP on [−L,L], with the boundary condi-
tions given at [−L− τ,−L] and [L,L+ τ ], for some
positive large enough integer L. Using the asymptotic
properties of the solutions, for large values of |t|, for-
mulae (3),(4), we obtain approximations of the solu-
tion on certain intervals [−L− τ,−L] and [L,L+ τ ].

Hence, instead of solving equation (1) on the real
line, we will solve it for t ∈ [−L,L]; in this case
boundary conditions (2) are replaced by{

v(t) = φ0(t), t ∈ [−L− τ,−L];
v(t) = φ1(t), t ∈ [L,L+ τ ],

(11)

where φ0 and φ1 correspond to the truncated forms of
the asymptotic formulae given by (3) and (4) respec-
tively.

Moreover, we recall that the solution must satisfy
the condition v(0) = 0.5.

We shall now describe a numerical scheme to
solve problem (1), (2), where this problem is first re-
duced to the form (1), (11). A feature of proposed al-
gorithm, which makes it substantially different from
the methods proposed before ([1]),([3]) is that it is
derived in two stages: stage 1-Compute the shift τ
and define the asymptotic behavior of the solution as
t < −L or t > L; stage 2-Computed the value of τ
we solve numerically the problem (1), (11), using the
Newton’s method (NM), and determine each linear it-
erate by the collocation method.

First stage: (i) In order to compute the solution on
interval [−L − τ,−L], we must fix a certain initial value
for τ and solve the characteristic equation . Notice that
we impose L = Kτ , where K is an integer; (ii) Knowing
the characteristic values λ+ and λ− we compute the ap-
proximate solution at [−L− τ,−L], using formula (3), and
[L,L + τ ], using the asymptotic expansion (4). Moreover,
we can compute the first k derivatives of solution (where
K = L

τ ), which will be needed to apply the method of
steps. In order to compute these values we must fix certain
initial guesses for ε and ε+; (ii) Using the estimated val-
ues of v and its first K derivatives at −L − τ and −L, we
compute the solution values v(−L+ τ), v(−L+ 2τ), . . .,
v(0), recursively, using formula (9). Then, we compute ε
from the condition that v(0) = 0.5; (iv) In the same way,
we compute the values of v(L − τ), v(L − 2τ), . . ., v(0),
starting the values of v and its K derivatives at v(L + τ)
and v(L). In this case, we have to apply the formula (9)
backwards. The correct value of ε+ is determined from the
condition that v(0) = 0.5; (v) Finally, we have to compute
the value of τ , from the condition v′(o−) = v′(o+) (dif-
ferentiability of the solution at t = 0). The left and the
right-hand sides limits of v′, at t = 0, are computed using
again formula (9), from −L to 0 and from L to 0, respec-
tively. More precisely, differentiating both sides of (9), we
obtain a recursive formula that can be used to compute the
derivative of v; (vi) At the end of this process, we know
that the values of τ , ε and ε+, as well as the values of the
solution and its first derivative at t = −L, t = −L+ τ ,. . ..

Second stage: (vii) Solve the problem (1), (11),
for a known value of τ , using the NM. With this pur-
pose, we must solve a sequence of linearized equations,
using the collocation method derived in [5, 10, 11]. When
we solve each iterate we search a solution which satis-
fies boundary conditions (11). Notice that these equations
correspond to the non-autonomous linear equation consid-
ered in [5, 11] (viii) When is computed the first iterative
v1(t), for the test problem (where f is given by (5)), we
take as v0 the function (7); (ix) Then, we determine a se-
quence of iterates v1(t), v2(t),. . .,vn(t), until the condition
‖vn(t)− vn−1(t)‖ ≤ tol is satisfied, where tol is a small
enough positive constant; (x) Since the exact solution for
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the test problem is known we can compare the numerical
results with the exact ones.

4 Results and Conclusions
In this section, we discuss some numerical results
which illustrate the performance of the numerical
scheme proposed in the previous section, for the so-
lution of (1), (2). First, the algorithm was tested us-
ing a problem with known solution, the test problem
(5), where we take f = fθ. There were computed
different iterates of the numerical solution for the test
problem described in Section 2.2, taking θ = 0.35,
for t = −1.2 and t = −0.2. Once the exact solu-
tion has τ = 0.680136, the initial value taken for τ
was τ = 0.680. The initial guess, in iterative New-
ton process, is given by v(ct), where is computed by
(7) and c is a certain constant. We calculated the esti-
mates of convergence order p = log2ε2N/log2εN and
the absolute error of the numerical solution εN , con-
sidering the test problem with θ = 0.35. The results
are accurate and the estimates of convergence order p,
using 2-norm, agree with the expected value, p = 2,
taking into account the analysis of the linear case (see
Section 2 in [5]). The absolute error of the numerical
solution is about 4.89× 10−11 and 2.02× 10−9 when
L is close to 2 and 2.7 respectively (K = 2, 3) and
N = 128.

For the target problem, taking the tolerance pa-
rameter tol = 10−6, the number of NM iterates (until
the process stops) were determined for each value of
α in the continuation method. Taking into account the
number of iterates, the process behaved correctly in
the sense of convergence.

The graphics of numerical solutions on [−2, 2]
obtained by continuation, for α = 0, . . . , 1 were built.
The case α = 0 corresponds to the numerical solution
of the target problem, α = 1 corresponds to the nu-
merical solution of the test problem. In the test prob-
lem we use θ = 0.35. The target problem was consid-
ered with a = 0.05, b = 15. When α decreases from
one to zero, the curves became more stiff. Also, at the
neighborhood of t = 0, the slope became greater and
the graphics approaches to vertical. In all graphics we
have got v(0) = 0.5.

First, the algorithm was tested using the test prob-
lem (5), where we have taken f = fθ. We analyzed
both the convergence of the method and the accuracy
of the obtained results. We propose a scheme to solve
numerically a nonlinear mixed type functional differ-
ential equation arising which models the nerve con-
duction in myelinated axons The convergence of the
numerical scheme is verified solving numericaly some
test problems with known solutions. Numerical re-
sults are in accordance with the results presented in
[3]. A question in study is how the solution of equa-

tion (1) will be affected by changing the parameters of
the problem.
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