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Abstract—Local one-parameterǫ point symmetries do not always
lead to readily integrable results. To address this here, a secondary
infinitesimal parameterω is introduced, leading to what we term
smart symmetries. These enable the transformation of the integrals
into limit expressions, much like Cauchys contour integration. As
proof of validity, we use these type of symmetries to develop a
procedure for determining frequencies for detecting any material,
depending on the elements constituting it, including metals such as
Copper, Silver, Gold and Platinum. Here, we give the frequency for
Platinum.
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I. I NTRODUCTION

ANYONE who has ever attempted to use group invariant
solutions in practical applications, can attest how difficult

it is to do so, primarily because of the unintegrable results the
pure Lie approach usually leads to.

In here, we introduce a parameterω in addition toǫ. The
parameterǫ maintains the role it has always been used for.
The new parameterω is used to evaluate the integrals, possible
through limits and continuity principles.

II. T HE THEORETICAL BASIS

There are a number of symmetry type in use today. Local one-
parameter symmetries are the most popular; hence the choice
we made to ground our theory around them.

A. Local One-Parameter Type Point Transformations

To begin, let
x̄ = χ (x;ω, ǫ) (2.1)

be a family of invertible transformations of pointsx =
(x1, · · · , xN ) ∈ IR N into points x̄ = (x̄1, · · · , x̄N ) ∈ IR N,
with ω andǫ in IR , subject to the conditions

x̄|ǫ=0 = x. (2.2)

That is,

χ (x;ω, ǫ)

∣

∣

∣

∣

ǫ=0

= x. (2.3)

These become the regular local one-parameter transformation
when ω = 0. The symmetries that follow from these new
new symmetries differs from the original local one-parameter
symmetries by this parameter as discussed in texts like [1]
and [2], and the rules that gorven them holds so long as the
conditionω = 0 holds, as outlined below.
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1) Invariant Functions inIR 2:
In IR 2, we haveχ = (φ;ψ), while x̄ = (x̄, ȳ) and x̄ =

(x; y), so that

x̄ = φ (x, y, ǫ) (2.4)

and
ȳ = ψ (x, y, ǫ) (2.5)

Expanding (2.4) and (2.5) aboutǫ = 0, in some neighbor-
hood ofǫ = 0, gives

x̄ = x+ ǫ

(

∂φ

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

)

+O
(

ǫ2
)

(2.6)

and

ȳ = y + ǫ

(

∂ψ

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

)

+O
(

ǫ2
)

. (2.7)

Letting

ξ (x, y) =
∂φ

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

, (2.8)

and

η (x, y) =
∂ψ

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

, (2.9)

reduces the expansions to

x̄ = x+ ǫξ (x, y) +O
(

ǫ2
)

(2.10)

and
ȳ = y + ǫη (x, y) +O

(

ǫ2
)

, (2.11)

or simply
x̄ = x+ ǫξ (x, y) (2.12)

and
ȳ = y + ǫη (x, y) . (2.13)

2) The group generator:
The local one-parameter point transformations in (2.12) and

(2.13) can be rewritten in the form

x̄ = x+ ǫ(ξ (x, y) ; η (x, y)) · ∇x, (2.14)

or
ȳ = y + ǫ(ξ (x, y) ; η (x, y)) · ∇y, (2.15)

so that

x̄ = (1 + ǫ(ξ (x, y) ; η (x, y)) · ∇) x (2.16)

and
ȳ = (1 + ǫ(ξ (x, y) ; η (x, y)) · ∇) y. (2.17)
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An operator,

G = (ξ (x, y) ; η (x, y)) · ∇, (2.18)

or

G = ξ (x, y)
∂

∂x
+ η (x, y)

∂

∂y
, (2.19)

can then be introduced, so that (2.12) and (2.13) assume the
form

(x̄; ȳ) = (1 + ǫG) (x; y). (2.20)

3) Prolongations formulas :
In determining the prolongations, it is convenient to use the

operator of total differentiation

D =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · · , (2.21)

where

y′ =
dy

dx
, y′′ =

d2y

dx2
, · · · . (2.22)

The derivatives of the transformed point is then

ȳ′ =
dȳ

dx̄
. (2.23)

Since

x̄ = x+ ǫξ and ȳ = y + ǫη, (2.24)

then

ȳ′ =
dy + ǫdη

dx+ ǫdξ
. (2.25)

That is,

ȳ′ =
dy/dx+ ǫdη/dx

dx/dx + ǫdξ/dx
. (2.26)

Now introducing the operatorD:

ȳ′ =
y′ + ǫD(η)

1 + ǫD(ξ)
=

(y′ + ǫD(η))(1 − ǫD(ξ))

1− ǫ2(D(ξ))2
. (2.27)

Hence

ȳ′ =
y′ − ǫ(D(η)− y′D(ξ)) − ǫ2(D(ξ))

1− ǫ2(D(ξ))2
. (2.28)

That is,

ȳ′ = y′ + ǫ(D(η) − y′D(ξ)), (2.29)

or

ȳ′ = y′ + ǫζ1, (2.30)

with
ζ1 = D(η)− y′D(ξ). (2.31)

It expands into

ζ1 = ηx + (ηy − ξx)y
′ − y′2ξy. (2.32)

The first prolongation ofG is then

G[1] = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ ζ1

∂

∂y′
. (2.33)

For the second prolongation, we have

ȳ′′ =
y′′ + ǫD(ζ1)

1 + ǫD(ξ)
≈ y′′ + ǫζ2, (2.34)

with
ζ2 = D(ζ1)− y′′D(ξ). (2.35)

This expands into

ζ2 = ηxx + (2ηxy − ξxx)y
′ + (ηyy − 2ξxy)y

′2

− y′3ξyy + (ηy − 2ξx − 3y′ξy)y
′′. (2.36)

The second prolongation ofG is then

G[2] = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ ζ1

∂

∂y′
+ ζ2

∂

∂y′′
. (2.37)

Most applications involve up to second order derivatives.
4) Lie equations :
One-parameter groups are obtained by their generators by

means ofLie’s theorem:
Theorem 1: Given the infinitesimal transformations (2.1) or

its symbolG, the corresponding one-parameter groupG is
obtained by solution of theLie equations

dx̄i

da
= ξi(x̄, ū),

dūa

da
= ηa(x̄, ū) ,

subject to the initial conditions

x̄i|a=0 = xi, ūa|a=0 = ua .

B. Our integration procedure

Anyone who has ever used Lie’s group symmetrical meth-
ods to solve differential equations [3], knows the danger
that afflicts this approach. One could end with beautifully
looking solutions, but an impractical because they be based on
unsubstantiated assumptions. The reason for such assumptions
being easy integration. Some such examples can be found in
[4] and [5], and a lot more in [6].

To avert this for one parameter local point transformations

x̄ = φ(x, ǫ), (2.38)

we introduce the parameterω, in addition to ǫ, so that the
transformation assumes the form

x̄ = φ(x, ǫ, ω). (2.39)

This is not to be confused with the two-parameters local
point transformations. The parameterω does is not involved
in determining the symmetry generators. Instead, it is allowed
to enter the infinitesimals of the generators. The result is that
integrals evaluated through the simple formula

∫ b

a

f(x)dx =

[

N
∑

i=1

ξif(x)ξ
−1
i

∣

∣

∣

∣

ω=0

]b

a

,

whereξ−1
i = ξ−1

i (x̄, ω) is the inverse function of the infinites-
imal ξi = ξi(x, ω), obtained by solving the Lie equations.
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Theorem 2:Suppose φ : [a, b] 7→ R is a continuous
and differentiable function, and is a solution of the differ-
ential equationf(x, φ(x), φ′(x), φ′′(x)) = 0 on [α, β] ⊆
[a, b]. Then it holds on [α, β] ∪ R \ [α, β] ⊆ [a, b] if
φ(m)(α)φ(n)(α)φ(m+1)(α)φ(n+1)(α) > 0. If these conditions
hold, then

φ(n)(ξ)φ(m+1)(ξ)− φ(n+1)(ξ)φ(m)(ξ) = 0. (2.40)

A special case of this theorem, useful here, withm = 0 and
n = 1 assumes the form

Theorem 3:Supposeφ : [a, b] 7→ R is a continuous
and differentiable function, and is a solution of the differ-
ential equationf(x, φ(x), φ′(x), φ′′(x)) = 0 on [α, β] ⊆
[a, b]. Then it holds on [α, β] ∪ R \ [α, β] ⊆ [a, b] if
φ(α)φ′(α)φ′′(α)φ(3)(α) > 0. If these conditions hold, then

φ′′(ξ)φ′(ξ)− φ(3)(ξ)φ(ξ) = 0. (2.41)

Its proof is as follows:
Suppose[φ(α) − φ(β)]φ′(α) < 0. Then this implies that

eitherφ(α) − φ(β) < 0 andφ′(a) > 0 or φ(α) − φ(β) > 0
andφ′(α) < 0. The first case implies thatφ(x) has a maximum
on (α, β), meaning there existsξ ∈ (α, β) such thatφ(ξ) =
0. The second case impliesφ(x) has a minimum on(α, β),
meaning there existsξ ∈ (α, β) such thatφ(ξ) = 0. That
is, [φ(α) − φ(β)]φ′(α) < 0 implies there existsξ ∈ (α, β)
such thatφ(ξ) = 0. Similarly, [φ′′(α) − φ′′(β)]φ(3)(α) < 0
implies there existsη ∈ (α, β) such thatφ′′(η) = 0. If then
φ andφ′′ have a common root in(α, β), thenη = ξ. If β is
chosen to coincide withξ, we haveφ(α)φ′(α) < 0 implying
φ(ξ) = 0 and φ′′(α)φ(3)(α) < 0 implying φ′′(ξ) = 0. Or
simply φ(α)φ′(α)φ′′(α)φ(3)(α) > 0 implying φ(ξ) = 0 and
φ′′(ξ) = 0. By L’Hospital’s rule, this meansφ′′(ξ)φ′(ξ) −
φ(3)(ξ)φ(ξ) = 0. Sinceφ is a continuous and differentiable
on (a, b), it follows then from the Taylor series expansion that
φ andφ′′ have infinite number of roots on(a, b), meaning the
result in (2.41) extends to[α, β] ∪ R \ [α, β] ⊆ [a, b], which
completes the proof. For a more detailed applications of the
above see [7], [8], [9], [10], [11] and [12].

III. G RAVITY RELATED RADIATION

We are of the view that while Newton’s mechanics has been
successfully applied to a wide variety of areas, it is thiswide
variety that makes it difficult to understandG through it.
Newton’s mechanics can be used to accurately predict the
motions of satellites. For us, this mechanics does not really
explain how they move. For a solid object in motion without
spin, Newton’s mechanics is usually used to describe the
average motion. The interest is not on the motion of the
individual atoms. While this is understandable, it would not
be wise to account for the motion of the individual atoms in a
satellite or a moving truck, but the sacrifice is huge. The true
picture gets forgotten, and is replaced by Newton’s averages.
It then becomes impossible to explain concepts likeG.

A. Formulation of the model

We are not really interested in exactly how this motion
happens. There are just too many atoms in an object to account

for each. We just want enough information that would allow
a formula forG to emerge. Applying Newton’s mechanics to
a single atom does not really help much. Applying it to the
charges in the atom does make a difference;G emerges. The
simplest atom is the element Hydrogen. We only have two
objects to work with. It is possible to go beyond this level,
but that would generate too much information, more than what
we bargained for. We would be overwhelmed.

1) The classical approach:
Let us suppose that the positions of two atoms,p1 and

p2, in an object are given by the points(X1, Y1, Z1) and
(X2, Y2, Z2) with respect to some reference point. Let us
also suppose that when the object is in motion with velocity
(v, 0, 0) with respect to the same reference point, then the
same atoms assume the positions(x1, y1, z1) and(x2, y2, z2).
In Newtonian mechanics, the distance between the atoms is
not affected by this. That is,

||(X1, Y1, Z1)− (X2, Y2, Z2)||

= ||(x1, y1, z1)− (x2, y2, z2)||. (3.42)

We do not agree with this. The general belief is that this is
the case whenv << c.

2) Relativistic approach:
Einstein’s relativistic mechanics is punted as a viable al-

ternative. According to this theory, there should be length
contraction. That is,

||(X1, Y1, Z1)− (X2, Y2, Z2)||

> ||(x1, y1, z1)− (x2, y2, z2)||, (3.43)

for v 6= 0. And this led toE = mc2, and many benefits for
mankind. We partially agree with this view.

3) Our view:
Our belief is that the positions of the atomsp1 andp2 should

be referenced with respect to the galactic center. The position
of the reference point does not matter in Newton and Einstein’s
mechanics. It does here. Any other reference point will lead
to inaccurate results. It then becomes possible to understand
Newton’s gravitational law in terms of electrodynamic vari-
ables, and deduce a formula forG. The distance between the
atoms oscillates between (3.43) and

||(X1, Y1, Z1)− (X2, Y2, Z2)||

< ||(x1, y1, z1)− (x2, y2, z2)||. (3.44)

The value of||(x1, y1, z1) − (x2, y2, z2)|| is not necessarily
what Einstein calculated it to be. This view is not really
new, except for the galactic center priority. The continuum
hypothesis explains this very well, just that it is unheard
to have it applied to an object in motion, or not having a
balancing force. All that we have to do is replace the material
elements of Continuum mechanic with atoms.

B. Newton’s mass based formula for gravity

In his universal gravitation law, Newton maintained that
every particle of matter in the universe attracts every other
particle with a force that is directly proportional to the product
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of the masses of the particles and inversely proportinal to the
square of the distance between them. That is,

FN = −GN

m1 m2

s2
d̂1. (3.45)

This is called the universal gravitation law, andG is the
parameter whose formula we are interested in. Applied to two
Hydrogen atoms of massmH = mp +me each, separated by
the distancer, we have

FN = −GN

(mH

s

)2

d̂1. (3.46)

This was viewed as a two body problem, in that there are
two bodies, one has massm1 and the otherm2, much like
the Earth and the Moon. Our quest here is to understand the
constantG in the law, and this two body does not help us
much in this regard. For us, this should be seen as a many
body problem, in that the Earth has infinitely many atoms, and
so does the Moon. This complicated picture can be simplified
by considering the gravitational force between two hydrogen
atoms. This is a four body problem, in that each atom has two
subatomic particles, each with its own mass. The atom on its
own is a two body problem.

The two body problem analysis can be found in many texts,
including [13] and [14]. We briefly outline it below for easy
reference.

1) The two-body problem for a Hydrogen atom :
Let us consider a system consisting of two bodies of mass

mp andme at distancesrp andre from the galactic centreO.
Let Fp andFe be the external forces acting onmp andme,
respectively, whileFpe is the internal force acting on body
mp due tome, andFep the internal force acting on bodyme

due tomp.
According to Newton’s second law, the motionof the two

bodies may be written as

mp

d2rp
dt2

= Fp + Fpe, (3.47)

and

me

d2re
dt2

= Fe + Fep. (3.48)

The centre of mass coordinateR is given by

R =
mprp +mere

mp +me

, (3.49)

and the relative coordinater is given by

r = rp − re. (3.50)

The inverse transformation are given by

re = R+
me

mp +me

r, (3.51)

and

rp = R−
mp

mp +me

r. (3.52)

To transform the equations fromrp and re to R, we add
(3.47) and (3.48); that is

mp

d2rp
dt2

+me

d2re
dt2

= Fp + Fpe + Fe + Fep. (3.53)

According to Newton’s third law

Fpe + Fep = 0; (3.54)

hence,

d2(mprp +mere)

dt2
= Fp + Fe. (3.55)

Using the result in (3.49), the preceding equation may be
written as

(mp +me)
d2R

dt2
= F. (3.56)

Hence,

M
d2R

dt2
= F. (3.57)

whereF = Fp + Fe, andM = mp + me. This is the first
of the equations we are interested in. To get the second, we
multiply (3.47) byme and (3.48) bymp and subtract:

memp

d2rp
dt2

−mpme

d2re
dt2

=

meFp +meFpe −mpFe −mpFep. (3.58)

It can be rewritten as This is the first of the equations we are
interested in. To get the second, we multiply (3.47) byme and
(3.47) bymp and subtract:

memp

d2(rp − re)

dt2
=

meFp −mpFe + (me +mp)Fpe. (3.59)

Dividing by me +mp and using the result in (3.50):

memp

me +mp

d2r

dt2
=

1

me +mp

(meFp −mpFe) + Fpe. (3.60)

Introducing the quantityµ, called the reduced mass, and
defined by

µ =
memp

me +mp

(3.61)

reduces the preceding equation into

µ
d2r

dt2
=
meFp −mpFe

me +mp

+ Fpe. (3.62)

C. Our magnetism based gravity

Our hypothesis is thatan atom has a velocity relative to
the centre of the universe; each individual charge in the atom
then has a magnetic field; the nett sum of these fields at any
point is not zero. This non-zero sum is what we believe is the
source of gravity. We will now build this up for two Hydrogen
atoms, a distancer apart.

Let rp be the position vector relative to the centre of the
universe for a proton in a Hydrogen atom. The velocity is then
ṙp. Its magnetic fieldBpb at positiona1, occupied by a proton
of another Hydrogen, is then

Bp,p =
µ0

4π
e ṙp ×

dp,p

d3p,p
. (3.63)
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Magnetic field of the electron at the same point is

Be,p = −
µ0

4π
e ṙe ×

de,p

d3e,p
. (3.64)

The sum of the two gives

B =
µ0

4π
e

(

ṙp ×
dp,p

d3p,p
− ṙe ×

de,p

d3e,p

)

, (3.65)

or

B =
µ0

4π
e

(

[ṙe + u]×
dp,p

d3p,p
− ṙe ×

de,p

d3e,p

)

. (3.66)

That is,

B =
µ0

4π
e

(

u×
dp,p

d3p,p
+ ṙe ×

(

dp,p

d3p,p
−

de,p

d3e,p

))

,

(3.67)

whereu = ṙp − ṙe.
From the Biot-Savart law:

F = q v ×B,

the force on the second proton moving with velocityv is

Fp =
µ0

4π
e q

(

v × u×
dp,p

d3p,p

)

+
µ0

4π
e q

(

v × ṙe ×

(

dp,p

d3p,p
−

de,p

d3e,p

))

.

(3.68)

The identitya× b× c = (a · c)b− (a · b)c reduces it to

Fp =
µ0

4π
e q

((

dp,p

d3p,p
· v

)

u− (v · u)
dp,p

d3p,p

)

+
µ0

4π
e q

(

v × ṙe ×

(

dp,p

d3p,p
−

de,p

d3e,p

))

.

(3.69)

The force on the electron is then

Fe =
µ0

4π
e q

((

de,e

d3e,e
· v

)

u− (v · u)
de,e

d3e,e

)

+
µ0

4π
e q

(

v × ṙe ×

(

de,e

d3e,e
−

dp,e

d3p,e

))

.

(3.70)

This is our impression of a force between two electrically
neutral objects.

D. The fifth, sixth and seventh force

The are three other forces from (3.70):

F1,2,3 =
µ0

4π

e2

s2

(

(v · d̂1)u
)

+
µ0

4π

e2

s2

(

(v · d̂)ṙe

)

−
µ0

4π

e2

s2

(

(ṙe · v)d̂
)

, (3.71)

They point to three different new directions. These do not
surprise. The possibility of a fifth force has long being
suspected, see [15] and [16].

It is also assumed that the two Hydrogen atoms are moving
at the same speed, and in the same direction, hence

u · v = v2. (3.72)

FromFN = FEM , we have

−G
m1 m2

s2
d̂1 = −

µ0

4π

[ev

s

]2

d̂1. (3.73)

We replacedGN with G, just to able to compare because our
G is not really a constant, as equation (4.80) below suggests.

IV. D ETERMINING v

It is assumed that the electron and proton are held together to
form the hydrogen atom by some forceFep, which could be
described through Coulomb potential or the Yukawa potential.

A. Condition condusive for easy evaluation ofG

The special case in which

meFp −mpFe

me +mp

= 0, (4.74)

reduces the equation to

µ
d2r

dt2
= Fpe. (4.75)

That is the case when the two Hydrogen atoms are far apart,
because the gravitation diminishes with distance.

B. The internal forceFep = −Fpe

HereFep is given by Coulomb’s law:

Fep = −
1

4πǫ0

[e

s

]2

. (4.76)

That is, to findu and henceG, we have to solve the system
constituted by

mpme

mp +me

d2s

dt2
= −

1

4πǫ0

[e

s

]2

, (4.77)

v =
ds

dt
, (4.78)

and

G =
µ0

4π

[

ev

mH

]2

. (4.79)

These can be put together to give

Gtt −

(

2π

µ0

)

G2
t

v

+
µ0

2π

(

e

mH

)2(
e2

4πǫ

mp +me

mpme

)

1

v
= 0,

(4.80)

with G = G(t, s, v).
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One other condition thatG has to satisfy is that gravity
fields travel a the speed of light. That is,

vss = c2vtt, (4.81)

wherec is the speed of light.
The equation (4.77) solves into

v2

2
= A+

µ

s
. (4.82)

It simplifies further into

s = B cos(ft)−
µ

A
, (4.83)

or

v = −Bf sin(ft), (4.84)

giving

vtt = −f2v, (4.85)

with

f = −
2A3

µ2
, (4.86)

where

A =
v2

2
−
µ

s0
, (4.87)

ands0 represents the ground state of the Hydrogen atom.
Substitutingvss and vtt into (4.81) leads to the quintic

equation (5.91).

V. A L IE GROUP SYMMETRICAL SOLUTION

After a lengthy analysis, one of the symmetries of the equation
leads to a simple solution of the form

G = GN cos(ft), (5.88)

with f given by

f =

√

√

√

√

(

v2

2 − µ
s0

)3

µ2
, (5.89)

and the gravitational constantGN given by

GN =

i

u ZH
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(5.90)

The parameterv is given by the quintic equation inv2:

α5v
10 + α4v

8 + α3v
6 + α2v

4 + α1v
2 + α0 = 0.

(5.91)

Its parameters are given by

α0 = −4µ4,

α1 = 8s0µ
3,

α2 = −8c2s0µ
3,

α3 = 12c2s20µ
2,

α4 = −6c2s30µ,

α5 = c2s40µ,

andµ = −Ke(e
−)2/9. with the physical parameters

G = 6.67259 ∗ 10−11Nm2/kg2,

gravitational constant from experiment,

s0 =
1

2
(0.52917720859) ∗

◦

A,

Bohr’s atom size,

s0 =
1

2
(0.528) ∗

◦

A,

hypothetical atom size,

e− = 1.602176487 ∗ 10−19C,

charge of an electron,

Kv =
µ0

4π
= 1 ∗ 10−7Wb/(A m),

permeability of free space,

Ke = 8.987551787 ∗ 109N/C2,

permittivity of free space,

c = 2.99792458 ∗ 108m/s,

speed of light in vacuum,

ZH = 1.000794,

mass number of an Hydrogen atom,

u = 1.660538782 ∗ 10−27kg,

atomic mass unit.

(5.92)

A. A note on the quintic equation (5.91)

The tenth-order equation (5.91) is essentially a quintic in
V = v2, and is said to be unsolvable, algebraicly, otherwise it
should have five roots. Lagrange gave up trying to solve the
quintic, because every time he did, it evolved into another of
a much higher degree. A closer look at the analysis reveals
some fascinating observations.

Equation (5.91) can be solved numerically. Settingv2 =
V transforms it into a proper quintic equation, say with
solutions/rootsV1, V2, V3, V4, V5. One then expects the rela-
tion v2 = V × 10p to lead to an equation with solutions
Vi × 10p, i = 1, 2, 3, 4, 5. But there is a value ofp0 at which
the solutions suddenly change. The realisation is that one set
of five solutions is valid forp ≤ p0, another forp > p0.

The paragraph above suggests that there could be ten roots
for a single quintic equation. Exploring this line of thought
using other mathematical tools suggests that they are more
forty. This means Lagrange was on the right track. He gave
up too soon.
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B. A calculatedG

Solution of the quintic through numerical techniques yields
ten roots. It is only two of them that lead to the correct answer.
Bohr’s atom size gives

v = ±6.89696 i ∗ 10−10m/s, (5.93)

from which the gravitational constant is found to be

GN = 6.656 ∗ 10−11Nm2/kg2, (5.94)

a 99.8% accuracy.
Our calculations suggest a Hydrogen atom size slightly

larger by about0.2%(what we refer to as the hypothetical
atom size, above). It led to

v = ±6.90451 i ∗ 10−10m/s, (5.95)

from which the gravitational constant is found to be

GN = 6.671 ∗ 10−11Nm2/kg2, (5.96)

a value that compares more favorably with the experimental
result at99.98%.

The same effect can be realized by rounding off the Bohr
obtainedv to ±6.9 i ∗ 10−10m/s, thus leaving Bohr’s model
intact.

VI. A PPLICATIONS

The formula (5.89) leads to the frequency17.2Hz, which
we believe is the gravitational frequency for the Hydrogen
atom. Other frequencies could be possible through the forces
suggested in (3.71), the17.2Hz has appeared in practise.

While studying the electromagnetic radiation in and around
the Snowfru pyramids, Khavroshkin and Tsyplakov [17] no-
ticed a peak around the17Hz frequency. They attributed it
to an external influence, that being the local power plant,
generating electricity at50Hz. Their proposition was that the
17Hz frequency is a subharmonic of this frequency, meaning
17Hz ≈ 50Hz/3. Subsequently, they concluded that the
frequencies falling within the interval(16.5−17.2)Hz can be
traced to the frequency attained by the electricity generators at
the Aswan hydroelectric power plant, as water passed through
the turbines.

Another chance detection of the frequency17.2Hz was by
Rakhmanov. This happened while studying the dynamics of
mirrors in laser interferometric gravitational wave detectors
[18], an antenna that will/is be suspended above earth, and
will pass over rivers, dams, lakes and oceans. He explained
the origin of the frequency as being indirectly induced by the
electronics. Apparently, this frequency has a dampening effect
on the motion of the mirrors.

This frequency is also encountered regularly in motions of
ships, and has been accepted as the natural frequency of the
masts. The cause is attributed to the engines. This example,
together with the other two, are an empirical confirmations of
the association of gravitational waves with ordinary mass.

A. The gravitational frequency of the element Platinum

The frequencies of heavier elements like Platinum, Gold and
Uranium, on the other hand, are easier to measure and validate,
unfortunately they involve too many calculations because of
the many subatomic particles. Each leads to a many body
problem.

The plot provided in Figure 1 is that of Platinum and its
isotopes. It is in abundance all around us, be it in jewelery
and vehicle exhaust systems. One only has to stand next to a
traffic light and see Platinum and Gold peak on a spectrum
analyzer, as cars go by. The Uranium peaks when standing
next to mine dumps from mines that used to dig it up.

Fig. 1. A picture of Platinum frequency captured with a Signal Hound
USB-SA44B spectrum analyzer, emanating from a catalytic converter. The
calculated frequency in1.88GHz. One of the isotopes in the picture measured
at 1.85GHz.

VII. D ISCUSSION AND CONCLUSIONS

The objective of this work was to determine a formula for the
gravitational constantG. This we did with99.98% accuracy.
The formula is in (5.90) and the calculated value in (5.96).
The accuracy can however be improved through a quantum
mechanical approach. We used Newton’s mechanics.

There were serendipitous results. First, a frequency associ-
ated with Newton’s gravitational force was observed. For the
element Hydrogen, it turned out to be17.2Hz, thus answering
the question for us on why this frequency is always observed in
places where water is in close proximity. Unfortunately, those
who observed it did not associate it with water or Hydrogen.
They had their own explanations. This prompted us to seek
an independent justification. We calculated the frequency for
the element Platinum, and succeeded in observing it through a
spectrum analyzer, presented in Figure 1(The calculations are
not presented here, of course). We chose this element on the
basis that it is so common, especially in the part of the world
the authors of this contribution are.

Choosingu = v in (3.72) was the right decision to take.
Equation (3.70) then led to an attraction, thus agreeing with
Newton’s gravitational attraction law. The caseu = −v should
lead to a repulsion, probably observable at astronomical scales.
An astronomical object, say a galaxy, moving in a countering
direction to others, should experience a repelling force from
them. The three forces in (3.71) would then generate toques
in the body, that would then proceed to turn it around. Thus
raising the dark matter phenomena.

There was a third result. The use of Lie’s symmetry group
theoretical methods to solve differential equations analytically
has not waned in more than a century, thanks to the practition-
ers in pure Mathematics, and analytical tools were absolutely
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necessary in this study. But as anyone in the physical sciences
can attest, one has to be extra cautious when using this
procedure. Some choose to stray away from it. We thus had
to come up with a modification to the theory, given in (2.39),
and it worked for us: We got a formula forG.

The final result regards Lagrange’s work on the quintic
equation, because our work led to an equation of this form.
Pursuing his thoughts would have assisted us in removing the
complex valuei from the velocity v in (5.93) and (5.95).
Unfortunately, this requires that a number of theorems in the
Theory Of Equations be ignored; a very dangerous terrain to
traverse.
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