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Abstract: The conformable fractional derivative and adequate fractional complex transform are
implemented to discuss the fractional higher-dimensional Ito equation analytically. The Jacobi
elliptic function method and Riccati equation mapping method are successfully used for this
purpose. New exact solutions in terms of linear, rational, periodic and hyperbolic functions for the
wave amplitude are derived. The obtained solutions are entirely new and can be considered as a
generalization of the existing results in the ordinary derivative case. Numerical simulations of
some obtained solutions with special choices of free constants and various fractional orders are

displayed.
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1. Introduction

Fractional differential equations (FDEsS) were
introduced to generalize the differential equations
with integer orders. Over the last two decades, and
due to the significant role played in mathematical
modeling with applications in science, engineering,
finance and information technology [1-3], FDEs
have attracted the mathematicians’ interests. The
development of software symbolic computations
helps researchers accomplish these tasks. As there is
no one method can treat the various kinds of

ISSN: 2367-8941

116

nonlinear FDEs, wide range of efficient schemes
have been proposed, modified, and expanded for
seeking numeric, semi-analytic and exact closed-
form solutions for such problems to understand
qualitative and measurable features of complex
phenomena. Among these methods, we mention the
bifurcation method [4], Hirota bilinear method [5],
(G'/G) method and its modification [6], Adomian

decomposition method and its extensions [7-10],
auxiliary equation method[11], exponential-rational

function method [12], F-expansion method [13],
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He’s variational iteration method [14], inverse

scattering method [15], differential transform
method and its reduction [16-18], homogeneous
balance method [19], Lie symmetry method [20],
first integral method [21], residual power series

method [22-24], equation
mapping method [25],exp(—¢(&)) method [26],

generalized Riccati

Jacobi elliptic function expansion method [27],

functional variable method and generalized
Kudryashov method [28-29], simplest equation
method and its modification [30-31], and the sub-
equation method [32].

In 1980, Ito constructed the (2+1)-dimensional

integro-differential equation of the form

Uy Uy +3(20,U, +UU )+3U,, (jutdx )+ozuyt +pu, =0
, 1)
as a general form of the bilinear KdV equation [33].

In Eq.(1), the unknown function u(x,y,t)

represents the relevant wave amplitude. ¢ and g

are known real parameters.

Recently, many authors have interested in
studying the (2+1)-dimensional Ito equation Eq.(1);
Wazwaz [34] applied the tanh—coth method to
derive single soliton and periodic solutions. Also,
N-solitons were derived by combining Hereman’s
method and Hirota’s method. The extended
homoclinic test technique and the bilinear method
was performed to obtain single, two-solitons,
periodic and doubly-periodic wave solutions [35].
Hyperbolic and periodic solutions were obtained

using the extended F-expansion method [36]. The
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(G'/G) method were used to carry out one-soliton

solutions [37]. Adem [38] deduced multiple wave
solutions by wusing the multiple exp-function
algorithm. The Woronskian determinant technique
was employed by Yildirim and Yasa [39]. Lump
and stripe solutions, and the diversity of
interactions basing on the Hirota bilinear form were
investigated by Ma et. al [40-42].

In this work, the focus is to construct new

analytic solutions for the fractional version of
Eq.(1)

2y 4y T A 27, N2y, A7, 7, 27
oy o™ ou o'u 07U o[ ou o
+3 +3—I/ +a +p

_2r+ 3 7+ N AT 'Y u x| Ay I 7 }’:
ot oxTot!  ox’ ot ox’et”  ox ot oy’at ox’ct

: (2)
0" is the n™—order

where y —fractional

derivative operator, 1”7 is the y—fractional anti-

derivative operator, t,X,y €(0,0), and0<y <1.
Parallel to the increasing of interest in fractional
calculus, various definitions for fractional derivative
and corresponding anti-derivative were suggested
[2-3].

Riemann-Liouville

Among these efforts, the Caputo and

derivatives  with  physical
meanings. These definitions found the acceptance
by researchers and were extensively used in the
field of FDEs, despite they do not meet some basic
formulas like the constants’ derivative, product,
quotient or chain rules, in addition to the disability
of achieve the exact solutions for many problems.
In general, it is an open problem in fractional
calculus. Recently, Khalil et al. [43] have proposed
a new definition of fractional derivative, known as

conformable fractional derivative (CFD). The CFD
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overcomes the shortage of others. It satisfies the
most basic properties of derivative with integer
order. The ability of converting the conformable
fractional partial differential equations into integer-
order differential equations gives the CFD the
advantage to process the nonlinear fractional partial
differential equations analytically. Abdeljawad [44]
and Atangana [45] have discussed the CFD and
concluded some useful properties. To overcome the
setback of getting physical interpretation, a
generalization of the conformable derivative is
investigated by Zhao and Luo [46]. Because of the

efficiency and applicability of the CFD, many

2. Conformable Fractional

Derivative and Integration

In this part, the fundamental concepts and
facts of the conformable factional calculus,

which will be used here, are listed.

Definition 1. [43] Let u(t) be a function
defined for t>0. The conformable fractional
derivative for u(t) of order y, 0<y<1, is
defined as

u(t+ht*”)—u(t
DZU:L”T(} (+ ) ()

(©)
Theorem 1. [43, 44] Suppose that u (t) and

v(t) are two y-differentiable functions on
some interval J <(0,0), y<(0,1], a, b and

k are real numbers. Then
1. The conformable differential operator is

linear,
ISSN: 2367-8941

118

International Journal of Environmental Science
http://www.iaras.org/iaras/journals/ijes

researchers employed it to tackle the partial
fractional differential equations (PFDES). See [6,
10, 27-28, 32, 47-51] and bibliography included
therein.

The rest of the paper is organized as follows: the
needed basics of the conformable fractional calculus
theory are presented in the next section.
Mathematical analysis of the Jacobi elliptic function
method and the Riccati equation mapping method
with application to Eq.(1) are included in Section 3.
Some obtained solutions are illustrated for various
fractional orders in the conclusion and discussion
section; Section 4.

2. D/k =0,

3. D/t“=kt"7,

4. D/ (uv)=vD/u+uD/v,

5. D/

t

6. D/u(v(t))=t"v'(t)u’'(v(t)),

7. D/u=t*"u’,

(u_j _vD/u-uD/V

Vv v 2

are satisfied forall t €J .

Definition 2. [43] Let u(t) be a function
defined on [t,,t), t >t, >0, and 0<y<1. The
conformable y —fractional integral of u (t) on

the given interval is defined by

17u = [t 7u (t)dt .

(4)
Theorem 2. [42] Suppose that u(t) is a

continuous function on some interval

J =(0,0) and y €(0,1]. Then
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teld.

()

for all

D/ (17u)=u(t),

3. Analytic treatment of conformable

fractional Ito equation

To investigate EQ.(2), and by putting

V4
u _ov , Eq.(2) will be
ox”

oo o ol o Rl

,V27+ 47/+ Z,VV,V+° /4 Z,V,V+u 3 7+a:/;/:/

(6)
Assume that the exact solution of Eq.(6) has

the form
v(yt)=v (£),
(7

where §=1(ny+fy7—77t7) is the wave
v

variable, «, ¢, and the wave frequency 7 are

Under

consideration, Eq.(6) will be carried into the

constants to bhe determined. this

following nonlinear ordinary differential

equation

< ((v)) =0.
(@)

3.1. Using the Jacobi elliptic function

(n—at—Bry® -k ® -

method

Continuing the process started before, where

¢(&) is the Jacobi elliptic function which

satisfies

ISSN: 2367-8941

+
ﬂ@(b'at,v

119

International Journal of Environmental Science
http://www.iaras.org/iaras/journals/ijes

Integrating Eq.( 8) twice with respect to &
and setting the integration constants to be zeros
gives the missing-Vv equation

(n—af—ﬂlc)v'—icg\/(s)— KZ(V')Z.

9)

Reducing the order of EQ.(9) by assuming
w(&)=V'(&) implies

(n—al-Br)w —xW"-3cW?=0.
(10)

Making Balance between w” and w? in
Eq.(10) results m=2.
Jacobi-elliptic function method [27-28] and the

In what follow, the

Riccati equation mapping method [23-26] will
be employed to construct new abundant exact
travelling wave solutions for conformable
fractional
Eq.(10).

E€XPresses as

w (£)=A,p(£) +A #(£)+A

Ito equation EQ.(2) by treating
In both, the solution of EQ.(10) is

A, =0,
11)
where ¢(&) is a function that satisfies some

solvable  nonlinear  ordinary  differential

equation, and A, ’s (i =0,1,2) are parameters to

be determined

£)=\|P ¢ (£)+Q #*(¢)+R
(12)
where P, Q andR are constants within certain

values to be given. Substituting Eq.(11) into
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Eq.(10) by making use of Eq.(12), and setting
the coefficients of ¢', i=0,1,...,4, to be zeros,

result the following set of simultaneous

algebraic equations in terms of A,, A, A, «,
¢ and 7:
(n—al-pBx)A,—(3x*+2RA,)A; =0,
(13)
(7-af-x(Qx* +6Ajc+ f))A, =0,
(14)
3c’Al — A, (x (6A, —4Qx) +n—a L - KB) =0,
(15)
2A1%(3A, +Px) =0,
(16)
3A,x* (A, +2Px)=0.

7)
Excluding the trivial solution, the solvable
system EQs.(13)-(17) results: A, =-2Px,
1 3
A =0, A, =—2(77—a£—,BK—4QK ), and
6k

n=al+px 4’ |k]\Q>—3PR . Accordingly,

and to avoid the duplicate obtained solutions,
Eq. (6) will get the traveling-wave solutions as
follows:

Case 1. For P=R =1, Q=-2, and for

P=R =-1, Q =2, the solutions of Eq.(12) are

¢=cd and ¢=dn respectively. Hence
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vOl(x,y,t):igxg.
(18)
Case 2. For P=R =1, Q=-2, and for
P=-Q =1, R =0, the solutions of Eq.(12) are
$=sn and ¢=cn respectively. Hence
Ve (X, Y, t)=2xtanh(&),
(19)

v03(x,y,t)=—%x§+2xtanh(§).

(20)
Case 3. For P =-Q =1, R =0, the solution

of Eq.(12) is ¢ =dc . Hence

Vo (X, Yy ,t)=—2ktan(&),

(21)

4

vos(x,y,t)=§1<§—21ctan(.§).

(22)
Case 4. For P =%, Q=-1, R=0, and for

P=-Q =1, R =0, the solutions of Eq.(12) are

¢=ns and ¢=ns *ds respectively. Hence
Vs (X, ,t)=2kcot(&),
(23)
Vo (XY ,t)=%x§+2xcot(§).

(24)
Case 5. For P =R =1, Q =-2, the solution
of Eq.(12) is ¢ =ns . Hence
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Ve (X, Y ,t)=2xcoth(&),
(25)

Voo (X, Y ,t):—gK§+2Kcoth(§).
(26)

Case6.For P=R==,0Q :%, the solutions

1
4
of Eq.(12) are ¢=ns+tcs and ¢=nc=tsc.

Hence

vlo(x,y,t):—/ctan(%gj,

(27)

2
(28)

vll(x,y,t):%xf—/ctan(lfj.

vlz(x,y,t):xcot(%éj,
(29)

Vi (X,y ,t):%K§+KCOt[%§j.
(1
sm(z(,‘J

cos(ié)isin(;gﬂ

(31)
. (1
sm[zgj

1 (1)
cos(zfjism(zéj

(32)

(30)

Vi (X, y,t) =2k

1
vls(x,y,t):gmf—ZK
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Case 7. For P=R =1, Qz—l , the
4 2
, sn
solutions of Eq.(12) are ¢=ns*cs, ¢=
1+cn

and ¢=sn+icn . Hence
vm(x,y,t):/ctanh(%cfj.
(33)
Vi (X,y ,t):—%K§+Ktanh(%§j.
(34)
vlg(x,y,t)zzccoth(%fj.
(35)

Vi (X,y ,t)=—%x§+xcoth(%§j.

(1

smh(zfj

1 . 1.\
cosh (25)“ smh(zfj

(37)

(1

smh(zé‘j

1 (1
cosh (2§j+| sinh [zg)

(38)

V,(X,y,t)=xtanh(&)—i xsech(&),
(39)

(36)

Vu(X,y.t)=2«

V21(X,y,t)=—£1(§+21(

v23(x,y,t)=—%x§+xtanh(§)—i xsech(&).

(40)
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Where §z£(1<x7+£y7—77t7). k=0, ( are relevant equation EQ.(10), and vanishing the
Y

coefficients of ¢', i =0,1,...,4, we get

arbitrary constants, and » €(0,1]. i (GA, +2DA, )~ (n—al— Br) A, +3k°A2 =0

3.2.Using the Riccati equation mapping
method

: (42)

As in the previous subsection, and by using
6x° (AOA1 + quAZ)—(U—(Zf—K((qZ +2p r)rcz +ﬂ))A1 =0

, (43)

the Riccati equation mapping scheme [25-28],
¢(£) in Eq.(11) is assumed to satisfy the

Riccati equation
3(A,+ PO KA, (- LB (68, + (49 +8p T )| A, =0
: (44)

2 (3AA, +p(PA, +50A, ) x) =0,

#(&)=pg*(5)+ag(S)+r.
(41)

As before, and with arbitrary constants p,
(45)

g and r subject to some restrictions,
3A,x” (A, +2p°k)=0.

substituting Eq.(11) with Eq.(41) into the

(46)
Solving the system in EQs.(42)-(46), with Case 1. When #>0, and pg=0 (or
eliminating the trivial solution, the following pr#0), we get
two sets of solutions are obtained: 1
Set 1: V01(X’y’t):‘/§’(tanh[§\/5§j’
A, =-2p’kx, A =-2pqx, A,=-2prx, (47)
— 3 M2
n=al+px+0x® and 0=q°-4pr. voz(x,y,t):@xcoth(%\/@fj,
Set 2:
A, =-2p’k, A =-2pq x, (48)
(1
270 ksinh| =+/6
AO:—%(q2+2pr)K, n=al+Pfx-0x°, and Ve (Xoy )= Vo (2«/_§J
e 1 (1 ’
cosh| =+/6& |£isinh| =46
6=q°—-4pr. (2\/_§j (ZJ_SZ]
For Set 1, the soliton and soliton-like (49)

solutions of Eq. (6) are classified as follows:
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Vo, (X,y,t) =0 K

Asinh(\/@t)JrB
(50)
2p rﬁsinh(«/@@)—q 0
2p r(1+cosh(\/§§))+6?’

Ves(X,y t) =k

(51)
2p rﬁsinh(\/éf)m 0
2p I‘(l—COSh(\/Ef))+t9.

(52)
Case 2. When #<0, and pg=0 (or

Ve (X, Yy 1) =—x

pr=0), we get

Vo, (X,y,t)=—/-6 Ktan(%ﬁgj,
(53)
Vo (X, Y ,t)zﬁxcot(%«/—_ﬁéj,
(54)
—ZJ—_exsin(;J—_ng
COS(;@SJisin(;ﬁéj |
(55)
A Cos(ﬁé’)im
Asin(J—_eg)+ B
(56)

2p r\/—_HSin(\/—_Hg)Jrq 0
2pr (1+cos(«/§§))+6’ ’

(57)

Ve (X Y t) =

Vi (X, t)=V-0x

Vi (X,y . t)=-«

ISSN: 2367-8941
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2p r@sin(ﬁf)—q 0

Vo, (X,y,t)=x :
o ) 2pr(1—cos(\/§§))+9
(58)
Case 3. When r =0 and pq =0, we get
25 K
Va(x,y,t)= - :
2 ) & +cosh(qé)-sinh(qé)
(59)
250 K
i) lt = H
Vi (Y1) & +cosh(qé)+sinh(qé)
(60)
Case 4. When g=r=0and p=0, we get
2p K
Vie(X,y,t)=
= (471) &+ P&
(61)

Where §:l(/<x7+€y7—77t7). k%0, /,
v

&, are arbitrary constants , and y €(0,1].

For Set 2, the solutions of Eq. (6) are listed
as follows:

Case 1. When >0, and pqg=0 (or
pr=0), we get

Vig (X, Y ,t):—K[%Hé—\/E tanh(%\/ggn,

(62)

Vi (X,y )= —K[%@f—\/@ccoth (%\/Egjj

(63)
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z@sinh(lﬁgj Zﬁxsin(ld—_efj
1 2 2
Vig(X,y ,t)=—x| =65 - I 1 Vo (X, y t)=—k| =05+ I I
cosh (2\/55]ii sinh(zx/gé‘j COS(Z\/—_ngiSin(Z\/—_ng
(64) (70)
A cosh(0&) /A +B? A 0\ + /A2 _B?
SRS E YLl L SN P O Ll G
3 Asinh(\/gé)JrB 3 Asin(@cf)m
(65) (71)

NESEY 2p rﬁsinh(«/@f)—qe
Va Xy t) =K 3 ég_2p r(l+cosh(«/§.§))+9
(66)

1 2p rﬁsinh(ﬁﬁ)me
Vo (X,y t)=—k| =605+
37 2pr (l—cosh(\/@f))qte
(67)
Case 2. For 6<0,and pq=0 (or pr=0),

we get
Vs (x,y,t):—x{%0§+\/—_¢9 tan(%x/—_%jj,
(68)
vzs(x,y,t)=—fc[§05—ﬁ cot@ﬁg’j}
(69)

ISSN: 2367-8941 124

ey t)= 19§+2prﬁsin(ﬁ§)+q9
6\ X, Y. l)= 3 2pr(1+COS(\/§§))+9
(72)

1 2p rﬁsin(ﬁé)—q&
Vo (X, y.t)=—x| 20—
3 2pr (1—cos(@§))+9
(73)
Case 3. For r=0 and pq #0, we get

1 4§OSinh(1q§j
st(x,y,t)=—qz< —0¢- :
3 (§0+1)[(§0+1)cosh[;q§jir(§0—1)sinh(;q§jj
(74)

Where le(zcxywyy—nty). k%0, /,
v

& #1 are arbitrary constants , and y €(0,1].
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4. Discussion and Conclusion

A variety of closed-form travelling-wave
solutions for the conformable fractional (2+1)-
dimensional non-local Ito equation are
investigated by means of the Jacobi elliptic
function method and the Riccati equation
mapping method. The two methods reduce the
size of computational work, and cover many
other methods like the functional variable
method, the generalized Kudryashov method,
the simple equation method and its extensions,
the sub-equation method, and many others
mentioned in the literature. Several types of
complex and real travelling-wave solutions are
formally extracted. The obtained solutions
include regular as well as singular periodic,
kink, and solitary wave solutions. Some of these
solutions are displayed in Figures 1-2 for

distinct values of the fraction y. Depending on

the choice of free parameters in the obtained
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results, different physical structures could be
obtained. Such solutions will be helpful to
understand the physical behavior of models in
applied sciences.

As no researchers make consideration to
solve Eq.(6) (or equivalently Eq.(2)), the
solutions achieved throughout this paper are
firstly presented and not published before to the
best of our knowledge. The solutions are all
verified by putting them back into the original
equations with the aid of the Mathematica
symbolic computation package 11. To
completely determine the solutions of EQ.(2),
one can easily apply the formula in Eq.(5) with
respect to space variable x . In general, the two
methods are somewhat similar, simple,
applicable and inclusive to tackle several types
of nonlinear evolution equations with integer

and fraction derivatives.
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Figure 1. 3D singular kink profile of Eq.(50) in the Xt — plane with (a) =1, (b) »=0.6, and (c) y =0.2, for
p=q=-—t=a=8=k=0(=A=05,and B =1.
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S
x
6\\
8

Figure 2. 3D singular periodic profile of Eq.(72) in the Xt — plane with (a) =1, (b) » =0.6, and (c)  =0.2, for
p=q=-r=a=8=x=(=05,and A=B =1.
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